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NOMENCLATURE

E Young’s modulus

Ki wavenumber (1/unit length), i = mode number

T period of wave

V(x) continuous data set

V[x] discrete data set

a radius

c0 velocity of longitudinal waves in an infinitesimally thin bar

ρE=

cd velocity of dilatational waves in an unbounded medium

ρµλ )2( +=

cg group velocity

dkdω=

cp phase velocity

cR velocity of Rayleigh waves

cs velocity of shear (transverse) waves in an unbounded medium

ρµ=

f frequency (Hz)

Λ=== pcTf πω 21

k wavenumber (radians/unit length)

pcω=

Λ wavelength

xε strain, x direction

µλ, Lamé constants

ρ density

xτ stress, x direction

ω frequency (rad/s)
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FIDELITY OF A FINITE ELEMENT MODEL OF LONGITUDINAL WAVE
PROPAGATION IN THICK CYLINDRICAL WAVE GUIDES

Anthony David Puckett

ABSTRACT

The ability to model wave propagation in circular cylindrical bars of finite length

numerically or analytically has many applications.  In this thesis the capability of an ex-

plicit finite element method to model longitudinal waves in cylindrical rods with circular

cross-sections is explored.  Dispersion curves for the first four modes are compared to the

analytical solution to determine the accuracy of various element sizes and time steps.

Values for the time step and element size are determined that retain accuracy while

minimizing computational time. The modeling parameters are validated by calculating a

signal propagated with a broadband input force.  Limitations on the applicability are con-

sidered along with modeling parameters that should be applicable to more general

geometries.
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1. INTRODUCTION

For the last half of the 20th century there was considerable interest in modeling

longitudinal wave propagation in semi-infinite and finite bars with circular cross-

sections.  The problem can be solved analytically or numerically, and often it is useful to

compare experimental results with these analytical and numerical results. However, for

even simple axially symmetric problems, analytical solutions can be very complex

mathematically, and numerical models can require extensive computer resources.

Analytically, the main challenge is the additional complexity associated with the

boundary conditions of another surface (the end of the bar).  A finite bar adds yet another

surface and even more analytical complexity.  Alternatively, the problem can be solved

numerically using the finite element method.  However, because of the need for spatial

and time resolution, numerical solutions can become very computationally demanding,

requiring large amounts of computer memory and disk resources as well as processor

time.  In particular, as higher frequency components are added, the increases in computa-

tional demands increase nonlinearly.

It would be very useful to know the compromises between the different ap-

proaches and when a particular solution technique is better for certain applications.  In

order to know if a finite element solution is more appropriate for an application, parame-

ters must be determined so that accuracy is maintained while computational costs are

minimized. The objective of this work is to identify these parameters and expand the fun-

damental understanding of the limits of numerically modeling longitudinal wave propa-
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gation at high frequencies.  This thesis establishes some initial guidelines for numerically

modeling of wave propagation using the finite element method.  Although these guide-

lines were developed using the simple cylindrical geometry, the intent is to provide de-

sign tools that will be valid for other geometries where analytical verification is not pos-

sible.  Over the last century however, extensive research has been performed on the

analytical solution to these problems.

The propagation of elastic waves in solids was studied extensively throughout the

19th and 20th centuries.  In particular, the propagation of elastic waves in circular cross-

sectional rods has been considered since the end of the 19th century.  The foundational

contribution for wave motion in a bar of circular cross-section was by Pochhammer

(1876) and later independently by Chree (1889).

Pochhammer derived the solution for three-dimensional wave propagation in infi-

nite rods with a circular cross-section.  The solution described longitudinal wave propa-

gation as well as torsional and flexural wave propagation and is known as the Pochham-

mer-Chree solution.   On the subject of longitudinal wave propagation in rods with

circular cross-sections, three main areas of interest evolved after Pochhammer.  The first

area of interest was a one-dimensional approximation to the three-dimensional equation.

The second area of interest was the experimental and numerical study of the Pochham-

mer-Chree solution.  The other notable research area was the development of a solution

similar to the Pochhammer-Chree solution but for a semi-infinite or finite bar.

The focus of this work is on the finite bar, but considered from the numerical side.

The Pochhammer-Chree solution was used to determine the accuracy of numerical results

of this thesis.  If modeling using finite elements is found to be accurate compared to the

analytical Pochhammer-Chree solution, then the same parameters may provide guidance
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to model other geometries accurately.  However, in order to model a bar accurately, the

correct model with the correct parameters must be used.

This thesis used a three-dimensional axisymmetric model, which is a three-

dimensional model in cylindrical coordinates that assumes there is no angular depend-

ence of the stresses and displacements.  This model describes the longitudinal wave

propagation.  Since there is no angular dependence, the model is a two-dimensional

model of a radial slice of a cylinder. The three-dimensional axisymmetric solution used a

commercial finite element code, ABAQUS, by Hibbitt, Karlsson, and Sorenson Inc.  It

should be noted that the axisymmetric model is quite simple and represents the minimal

configuration and computational demand for a problem of significance.  However, the

parameters determined from the results of this work should provide insight into more

complex geometries.

The first portion of this thesis is concerned with determining the correct parame-

ters for modeling wave propagation with finite elements. First, the modeling of single

mode propagation and exploring the effects of mesh size and time step on the accuracy of

the model is considered.  These results are used to determine the mesh size and time step

for all of the multi-mode models.  The parameters are then validated by comparing dis-

persion curves created from the Pochhammer frequency equation to dispersion curves

created from the results of the FEA.

Insights from this work have applications to several areas of research especially in

the field of nondestructive evaluation (NDE).  An established technique to determine the

Young’s and shear moduli is the measurement of the time delay between the arrival of

the first and second modes in a thick cylindrical waveguide.  This is a key method for

determining the moduli for materials at high temperatures (Peterson, 1999).  Typically
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large diameter cylinders are used, so the wave speed approaches that in an unbound me-

dium.  However, in a number of practical applications a smaller diameter cylinder must

be used.  For these cases dispersion plays a dominant role, and simple one-dimensional

theory cannot predict the material properties.  In these cases an analytical or numerical

solution is required to evaluate the results.  The experiment can be modeled with finite

elements and the correct parameters to correctly predict material properties.

Recent research has also considered the application of guided waves to pipeline

inspection (Aristégui, Cawley, and Lowe, 1999), timber characterization (Peterson,

1998), and other applications in non-destructive testing.  In these and other cases the

wave propagation problem needs to be modeled.  The parameters from this thesis were

explored using a circular cylindrical bar, however the parameters should be applicable to

many different and more complex geometries.

This background then leads to the question that frames the thesis statement: can

longitudinal wave propagation in thick cylindrical waveguides be addressed with good

engineering practice and finite computational resources?
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2. BACKGROUND

The propagation of waves has been a topic of interest in mathematics and me-

chanics for over 200 years.  The basic propagation of elastic waves in solids was exten-

sively developed during the 19th century.  Only in the last part of the 19th century has

wave propagation in cylindrical rods begun to be investigated.  The rich area of research

that has developed in this area is considered in this section.   The main focus of this sec-

tion is the research on the propagation of longitudinal waves in circular cross-sectional

cylindrical rods.  A number of the contributions mentioned in this section are directly

relevant to the problem considered in this thesis.

2.1 One-dimensional Wave Equation

One of the first notable contributions to wave propagation in general was made by

d’Alembert in 1747.  D’Alembert derived a general solution of the one-dimensional wave

equation, which provided significant insight into wave propagation.  The solution devel-

oped, )()(),( ctxgctxftxu ++−= , has the form of an arbitrarily shaped waveform

propagating in the positive and negative directions.  Consider, if )( ctx −  is constant then

)( ctxf −  is constant.  For )( ctx −  to remain constant for increasing time, x  must in-

crease.  This indicates that the shape of )( ctxf −  propagates in the positive x  direction

with increasing time, Fig. 2.1.  Similarly, )( ctxg +  propagates in the negative x  direc-

tion.  If both functions have the same shape and are sinusoidal then a standing wave is

produced.  These functions represent propagating disturbances, and these disturbances
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propagate without distortion.  This is a fundamental characteristic of the one-dimensional

wave equation (Graff, 1975).

Figure 2.1: One-dimensional wave propagation, )( ctxf − , t2 > t1.

There are two one-dimensional wave equations each related to the limit condi-

tions for an elastic waveguide.  The equations have nearly the exact same form, but the

wavespeeds are different.  Both of the equations are derived from the stress wave equa-

tion, 
2

2

t

u

x
x

∂
∂=

∂
∂ ρτ

.  Achenbach (1999) refers to these two wave equations as waves in

one-dimensional longitudinal strain and waves in one-dimensional longitudinal stress.

The one-dimensional longitudinal strain wave equation is based on a spatially uni-

form surface pressure applied to an infinite half space.  Any plane perpendicular to the

face is a plane of symmetry, so there can be no transverse displacements.  Thus the half
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space is described by the displacement in the direction of the axis perpendicular to the

face, which is a state of one-dimensional deformation.  If the axis perpendicular to the

face is the x axis, then 
x

u
x ∂
∂=ε  and 

x

u
x ∂

∂+= )2( µλτ . The one-dimensional longitudinal

strain wave equation becomes 
2

2

22

2 1

t

u

cx

u

d ∂
∂=

∂
∂

, where 
ρ
µλ 22 +=dc .  The wavespeed dc  is

known as the wavespeed of dilatational waves in an unbounded media (Redwood, 1960).

The one-dimensional stress wave equation is based on a long thin rod in axial ten-

sion or compression.  If the x axis is along the bar, then the longitudinal normal stress is a

function of x and t  only and is the only nonvanishing stress.  For this case xx Eετ = ;

therefore, 
2

2

2
0

2

2 1

t

u

cx

u

∂
∂=

∂
∂

 where 
ρ
E

c =2
0 .  The wavespeed 0c  is known as the wavespeed

of infinitely long waves in a cylinder, and it is the low frequency limit condition for the

first mode of the three-dimensional cylindrical wave equation for longitudinal waves.

2.2 Three-dimensional Wave Equation

For cylindrical geometries, Pochhammer first derived the three-dimensional wave

equation in 1876 and Chree separately in 1889.  Pochhammer transformed the equations

of motion into cylindrical coordinates, and solved the equations for the cases of compres-

sional, flexural and torsional waves in an infinite rod.  By applying the boundary condi-

tions for traction free surfaces, the frequency equations were generated.  The frequency

equation describes the modes of both steady vibration and transient wave propagation

(Miklowitz, 1966).  The frequency equation is valid for an infinite cylinder with traction

free surfaces, and the equation also shows the dispersive nature of the waves for all

propagating modes in the three-dimensional cylinder.
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Continuing research on longitudinal wave propagation in cylinders was concerned

with three areas.  Understanding the Pochhammer frequency equation and exploring the

equation numerically was the first area.  Despite the completeness of the wave equation

few analytical results were developed in the beginning because of the complexity of the

relationships.  Developing approximate solutions for longitudinal wave propagation in

semi-infinite bars was the second area.  The Pochhammer frequency equation is only

valid for an infinite bar.  The introduction of additional free boundaries, for example a

semi-infinite bar or finite bar, couples equations and adds complexity.  The third area was

the exploration of a one-dimensional approximation to the Pochhammer frequency equa-

tion.

2.3 Continuing Research

2.3.1 ONE-DIMENSIONAL APPROXIMATIONS

The exploration of a one-dimensional approximation was the first area to be ex-

plored.  A. E. Love (1927) developed the first one-dimensional approximation of the

Pochhammer frequency equation.  Love’s equation included the effects of the inertia of

the lateral motion, the cross section expanding or contracting.  Love formed the equation

of motion using the energy method.  The equation has the form

2

2

22

4
22

2

2

x

u
E

xt

u
K

t

u

∂
∂=





∂∂
∂−

∂
∂ νρ (2.1)

where K  is the radius of gyration and ν is Poisson’s ratio.  Mindlin and Herrmann were

the next to develop a one-dimensional approximation. This approximation took into ac-

count both the radial inertia and the radial shear of the rod.  The approximation has two
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modes of wave transmission, and the lower mode shows much better agreement with

Pochhammer than does Love (Miklowitz, 1957).  Miklowitz (1957) extensively analyzed

the Mindlin-Herrmann theory numerically and experimentally.  Mindlin and McNiven

(1960), revised the one-dimensional approximation to include both the axial shear and the

radial modes coupling with the longitudinal mode.  These modes also couple with each

other in the range of commonly encountered Poisson’s ratios.

2.3.2 NUMERICAL RESEARCH

Not long after Love had developed his one-dimensional approximation, work was

being performed calculating numerical results from the Pochhammer frequency equation.

Field (1931) was one of the first investigators to calculate numerical results.  Field com-

pared results from the Pochhammer frequency equation for the first mode to existing ex-

perimental data.  In the comparison Field concluded that the Pochhammer theory ac-

counted for the right velocity when the frequency approached zero but not when the

frequency approached infinity.  The Pochhammer frequency equation approaches the

wave speed of Rayleigh surface waves, Rc , as the frequency approaches infinity (see

Figure 4.1).  However, Field expected the wave speed to approach the wave speed in an

infinite medium as the frequency approached infinity.  Field based his conclusions on low

frequency data for solid cylinders, the only data available at the time.  That data is

roughly analogous to low frequency data for fluid filled cylinders.  The high frequency

data for fluid filled cylinders shows that the phase velocity approaches the wave speed in

an infinite medium, so Field concluded the same must be true for the phase velocity in a

solid cylinder.
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Bancroft (1941) followed Field’s research and explored the effect of Poisson’s

ratio on the first mode dispersion curve.  Bancroft’s results were in good agreement when

compared to experimental data published by Shear and Locke (1939).  Bancroft argued

against Field’s conclusions.  Bancroft stated, “In the case of the infinite medium, the

wave involves no motion in the plane of the wave front, and the displacement is uniform.

In the case of a long bar, motion in the plane of the wave front is inevitable, and the dis-

placement is far from uniform.  It is hard to see how a valid analogy can be drawn be-

tween the two cases.”

In all of the earlier work, only the first mode was explored.  Davies (1948) pub-

lished a paper that among other things plotted the phase velocity of the first three modes

of the Pochhammer frequency equation and the group velocities of the first two modes.

The phase velocity is the speed associated with the propagation of a point of constant

phase whereas the group velocity corresponds to the velocity of energy propagation.  This

is the most well known work in this area.  Davies’ analytical results were in good agree-

ment with Bancroft.  Davies introduced a way to measure the axial and radial displace-

ments separately on a circular bar and produced experimental results using a Hopkinson

bar.  Davies’ results were in good agreement with the Pochhammer theory, and he con-

firmed the phenomenon of dispersion experimentally (Al-Mousawi, 1986).

There have also been experimental results that appear to not agree with the

Pochhammer theory.  Tu, Brennan, and Sauer (1955) experiments on a cylindrical bar

agree with Field’s original conclusions that the phase velocity approaches the wavespeed

in an infinite medium as 
π2

ka
approaches infinity.  Transducers were used on the ends of

the cylinder to both create and receive the pulse, and pulsed longitudinal waves were
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used as the input.  This discrepancy with the Pochhammer theory is discussed in Section

4.1.

Three of the last major contributions in this area were only concerned with ex-

ploring the Pochhammer frequency equation numerically.  Onoe, McNiven, and Mindlin

(1962) extensively mapped the relation between the frequency and propagation constant

for axially symmetric waves in an infinitely long isotropic cylinder.  Real, imaginary and

complex propagation constants were calculated for a large frequency spectrum.  The in-

fluence of Poisson’s ratio was also further developed.  Zemanek (1972) confirmed theo-

retical results with experimental results.  A most recent contribution has been the work of

Peterson (1999) involving the reconstruction of multi-mode waveguide signals, using the

Pochhammer-Chree Solution, that are comparable to those measured in experimental

configurations.

2.3.3 SEMI-INFINITE AND FINITE BARS

The approximation for a semi-infinite bar of circular cross-section is also an area

of continuing research.  It is only within the past 50 years that a three-dimensional equa-

tion has been considered to approximate a semi-infinite bar and, ultimately, a finite bar.

One of the first approximations was by Skalak (1957) who derived an approximate solu-

tion for the impact of two semi-infinite cylinders.  The theoretical results agreed with ex-

perimental results at long times.  Not long after Skalak, Folk et al (1957) developed a

solution for a semi-infinite bar loaded with a step pressure function at the end.  A pres-

sure was applied to the end of the bar, and the end of the bar was constrained from dis-

placing laterally.  The mixed end conditions were used to uncouple the equations of mo-

tion.  Shook and Curtis (1957) showed experimentally that the mixed end condition



12

solution predicted accurately the main features of the signal in a semi-infinite bar for

distances larger than 20 diameters.  Kennedy and Jones (1969) used the method of Folk et

al. (1957) to investigate the axially symmetric longitudinal response of a semi-infinite

elastic bar to a pressure step end loading.  Goldberg and Folk (1993) extended the method

of Folk et al. (1957) to allow it to be used for the pure-end-condition problem.  Goldberg

and Folk obtained the solution to two mixed-end-condition problems, and used these so-

lutions to solve the pure-end-condition problem.

Other recent work has dealt with composites and anisotropic materials.  Nayfeh

and Nagy (1995) describe axisymmetric waves in anistropic layered cylinders with spe-

cific applications to fiber systems used in composites.  Laverty (2000) developed a gen-

eral approach for the characterization of a layered transversely isotropic cylinder.

In addition several papers review the research performed over the years.  The re-

view paper by Julius Miklowitz (1966) covers the research up until 1964. Al-Mousawi

(1986) reviews mainly the experimental side, and Thurston (1978) reviews elastic waves

in rods and clad rods through August 1977.  A monograph on elastic waveguides was

also published by Redwood (1960)

2.4 Summary

It has only been within the last 50 years that analytical solutions for elastic wave

propagation in even the simplest cylindrical geometries have become available.  Despite

the simplicity of the cylindrical geometry the mechanical relations are very complex.  For

even a slightly more complex geometry no exact analytical solution exists.  It is in these

areas that the finite element method (FEM) can be very useful.
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3. COMPUTATIONAL RESOURCES

Prior to the recent development of ample computational resources, the numerical

solution of elastodynamic problems has typically relied on boundary element formula-

tions to reduce the dimensionality of the problem.  However, unlike FEA, boundary ele-

ment methods (BEM) are difficult to integrate into a general-purpose analysis code, and

there are few general-purpose codes commercially available.  Conversely, there are many

commercially available FE programs that have been extensively developed.  As a result,

the potential for FEA continues to be explored for this important class of problems.  A

need persists; however, to understand the computational cost of FEA in elastodynamics

and to provide design tools to assist researchers in elastodynamics.  In particular, the

resolution that is required for a numerical simulation of multiple propagating modes in a

solid has created difficulties in prior research (Valle, 2000).  For this reason some types

of problems require that analytical or semi-analytical solutions be used from a practical

perspective.  However, only highly simplified geometries can be used for these cases, so

finite element solutions are very important.

A primary objective of this research is to provide perspective regarding the role of

FEA and analytical solutions in elastodynamic problems.  The role of analytical and nu-

merical solutions is somewhat more complex for elastodynamics problems because of the

need to time step solutions as well as to discretize the physical domain.  The increased

dimensionality has reduced the applicability of FEA to elastodynamic problems.  Some

analytical solutions contrast sharply with FEA in terms of computational costs since they
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can usually be run in a math program on a personal computer to produce numerical re-

sults.  These results are generally obtained with far lower computational demands than

numerical results from a finite element analysis.  Thus the objective is to further expand

the understanding of the spatial and temporal resolution required for FE analyses of

elastodynamic problems.  On that basis an understanding of potential limitations on FE

code and the practicality of FE analyses of elastodynamics can be assessed.

3.1 Finite Element Method

For dynamic modeling there are two finite element methods available.  The first

and more traditional method is the implicit method.  The implicit method is typically

used for static analyses and dynamic analyses with quasi-static loading or long time re-

sponses.  For dynamic analyses the implicit method consists of five steps.  First, the dis-

placement equation of motion, )(tFkuucum =++ ��� , is formed for each element.  Next, a

Newmark beta method is used to obtain the system equivalent contribution for each ele-

ment. All of the element contributions are assembled, [ ]{ } { })(tFuK equivequiv ∆=∆ . The

changes in displacements are determined by inverting the equivK  matrix.  The displace-

ments, velocities, stresses, and strains are updated, the time is incremented and the proc-

ess repeats.  The primary computational effort is the matrix inversion (Bennett, 2000).

The explicit finite element method is the second method, and it is used primarily

for wave propagation and simulating short time transient responses, i.e. impacts, blasts,

etc. (Bennett, 2000).  There are four steps in the explicit method.  First, all of the force

contributions from all the nodes in an element are summed.  An acceleration is calculated

by dividing the sum of forces by the mass.  The velocity and displacement are calculated
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from the acceleration, and finally the time is incremented.  For example, consider a can-

tilevered bar with a force on the end in the axial direction.  In the first increment the ac-

celeration of the first node is calculated from the applied load.  The acceleration is inte-

grated over the increment of time using a central difference rule to determine the

velocity.  The velocity determines a strain rate and the strain in the element is determined

from the integration over the time increment of the strain rate.  The stress in the element

is calculated from the strain and a force on the next node is determined.  The process is

explicitly incremented. Thus, for the next time increment, an applied force remains on the

first node, but a force is also on the first and second node from the stress in the element.

The process continues as the forces propagate along the bar.  The required time incre-

ments for the explicit method are smaller than the implicit method in order to maintain

stability.  However, the calculations at each step are simple, so the computer can proceed

through the time steps more quickly (Getting Started with ABAQUS/Explicit, 1998).

For either FE method, in order to resolve the wave front, the Courant condition

must be satisfied.  The Courant condition states that the wavefront cannot travel farther

than one element in one time step. This ensures the effect of being able to resolve the

wavefront, and any disturbance that is propagated will retain its shape unless there are

multiple frequencies that excite higher modes or the frequencies are high enough to feel

the effects of dispersion.  Therefore, the implicit and explicit finite element methods both

require a small time step, but the explicit time step is still smaller than the implicit time

step.

The explicit method was used for the models in this thesis for two reasons.  In or-

der to resolve the wave front, the time step has to be small for both the implicit and ex-

plicit methods.  However, the explicit method requires considerably less computational
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time per time step.  The explicit method is also linearly scalable.  If the number of ele-

ments doubles the computation time doubles.  The computation time quadruples with

twice as many elements for the implicit method because of the matrix inversion1.

The FE program used for this research was ABAQUS (version 5.8.1.4) by Hibbitt,

Karlsson, and Sorenson, Inc.  ABAQUS can solve dynamic problems with either an im-

plicit method or an explicit method.  An axisymmetric element was used for the model

because in finite element analyses circular cross-sections lend themselves to the axisym-

metric element.  Also, this thesis is concerned with longitudinal wave propagation, which

has no theta dependence in cylinders with circular cross-section.

3.2 Computer System

The objective of this thesis is to provide insight into the computational cost of

modeling wave propagation.  Computers continue to develop rapidly in their capabilities;

thus, the computer system used for this research must be put into perspective to under-

stand the computational cost and limits of the FE model.

The type of chip and computer can make a large difference in the computational

abilities.  Different chip architectures can affect efficiency; so more than clock speed is

required to assess the computational speed of the machine.

The research for this thesis was performed on two computers, both SGI Power

Challenge L 8xR10000.  The first machine, named Colorado, had eight 195 MHz proces-

sors and 2048 megabytes of RAM.  Half of the processors had one megabyte of level 2

cache2 and the other half had two megabytes of level 2 cache.  The second machine,

named Columbia, had eight 195 MHz processors and 4096 megabytes of RAM.  All of

                                                          
   1 This true in general; however the times vary because of computational tricks.
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Columbia’s processors had four megabytes of level 2 cache.    Both systems were about 5

years old and used versions of the operating system IRIX 6.5.

These computers can be compared to others using a benchmark.  Standard Per-

formance Evaluation Corporation (SPEC) has established a relevant set of benchmarks

for performance evaluation of modern computer systems (www.spec.org, 2000).  Cur-

rently, one of the benchmark suites that has been tested on a large number of computers

is the CFP95.  The CFP95 benchmark suite consists of 10 benchmarks ranging from

vectorized mesh generation to weather prediction to solving Maxwell’s equations.  These

benchmarks measure out of cache memory and CPU performance.  The manufacturer

runs each of the benchmarks on their computer, and the runtime is recorded.  The run

time is compared to a reference time.  A ratio is produced from the reference time divided

by the runtime.  The ratios of all the benchmarks for a certain computer are averaged.

This average number is used to compare different computers.  The speed of the R10000

processor is compared to some more common configurations using the CFP95 bench-

mark suite, Table 3.1. The finite element program, ABAQUS, did not have parallel proc-

essing capabilities on these machines and used only one processor for a single model.

Therefore, all of the performance measurements are for a single processor.  Data could

not be found for the processors with four megabytes of level 2 cache.

                                                                                                                                                                            
   2 Level 2 cache is the amount of RAM contained in the processor.
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Manufacturer Computer System CFP95 Baseline FLOPS
Power Challenge R10000

195 MHz, 1MB L2
11.8 380 Million

SGI
Power Challenge R10000

195 MHz, 2MB L2 13.1 380 Million

AL440LX Motherboard
433 MHz Celeron

10.4 N/A

SE440BX2 Motherboard
550 MHz Pentium III

13.8 N/AIntel

MS440GX Motherboard
450 MHz Pentium II Xeon

13.5 N/A

Table 3.1: Computer comparison based on CFP95 benchmark suite by SPEC.

From Table 3.1 it is evident that the R10000 processors are equivalent to several

Intel processors.  However, the Colorado and Columbia both had over 2 gigabytes of

RAM.  Large ABAQUS models require a large amount of RAM, and in some cases the

minimum RAM required may be more than 250 megabytes.  If a large model is run on a

system that does not have enough RAM, virtual memory will be used that requires data

be written to the hard drive.  This can significantly impact computational time or result in

a system crash.

ABAQUS has also developed benchmarks.  These benchmarks are solely based

on ABAQUS models.  There are benchmarks for both the explicit method and the im-

plicit method.  However, information could not be found for the computers used in this

research.  Therefore, a benchmark is included in the appendix.  A model similar to the

ones used in this research is used on a range of computers.  Based on the computation

time of the benchmark model, the time for the larger models can be predicted.  However,

as mentioned before, if memory constraints exist the computational times will not be

linearly scalable.
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4. TECHNICAL APPROACH AND RESULTS

The phenomenon of dispersion is an element of all wave propagation problems.

For all conditions except special cases and limiting conditions, dispersion of a broadband

signal is evident. Dispersion is the phenomenon that waves with different wavelengths

will travel at different speeds in the same material.  Dispersion is present in elastic and

electromagnetic waves as well as in waves in fluids.  In elastic waveguides, dispersion

arises both from geometrical considerations as well as a result of material properties.  In

this thesis the material used for the model is linear elastic, so the observed dispersion is

purely a result of the geometry of the problem.  The key description of a wave with dis-

persive characteristics is the dispersion curve.  Dispersion curves show the relationship

between the phase velocity and the wavelength of a specific material and geometry, Fig-

ure 4.1.  Another illustration of dispersive wave characteristics is the group velocity

curve. The group velocity, cg, represents the velocity of energy propagation, dk
dcg
ω= .

Dispersion curves were used in this work to compare the results from the FEA to

the analytical results from the Pochhammer-Chree solution.  Since prediction of the dis-

persion curves is a key analytical result of the relevant elastodynamic solutions, the dis-

persion curve domain is well suited to comparing the fidelity of FEA results to canonical

solutions from the literature.

In order to accurately create dispersion curves from a finite element model, it is

necessary to know how the element size and time-step affect the accuracy of the model.
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The first part of this section describes the numerical experiments performed to determine

the element size and time-step that will give accurate FEA results.  The case of a single

dispersive mode was considered first.  The effect of increasing frequency is an increase in

the number of modes that propagate in the waveguide.  This case was also considered.
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Figure 4.1: Calculated analytical dispersion curves for an isotropic cylinder, 3.0=ν .

The second part of this section is concerned with validating the parameters deter-

mined in the first section.  The parameters were verified by producing three sets of dis-

persion curves.  Running many finite element models, each with a different excitation

frequency, created two sets of dispersion curves.  The results of each model were plotted

to create the dispersion curves.  The third set of dispersion curves was created from a sin-

gle model with a broadband input.  The two sets of dispersion curves were compared to
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dispersion curves created from the Pochhammer-Chree solution, and the FEA results

were validated.

4.1 Numerical Cases

The model used for testing and final analytical validation of the dispersion curves

was an axisymmetric model.  The model was a simple cylindrical bar with a radius of

0.25 inches (6.35 mm).  The length was varied for the cases considered.  The bar was

modeled as a steel bar with the material properties:

• Young’s Modulus, 61030xE =  psi (26.8 Gpa),
• Poisson’s ratio, 3.0=ν ,
• Density, 41032.7 −= xρ 42 /sec inlb ⋅ (7822.8 kg/m3).

The centerline of the axisymmetric model was fixed in the radial direction.  A pressure

that was constant across the radius, defined by a user’s function, was applied to the cir-

cular face of the bar.  This was the basic model, and the only changes between models

were element size, time step, input pressure function and the length.

The model was a finite length bar in all of the cases considered even though the

Pochhammer frequency equation is based on an infinitely long bar.  The results of the

finite element analyses could be compared to the Pochhammer frequency equation be-

cause the waves were not allowed to reflect off of the free end in the FE model.   Wave

propagation in a finite length cylinder behaves the same in an infinite cylinder until the

wavefront reaches a discontinuity such as the end of the bar or a step change in diameter.

4.1.1 SINGLE MODE PROPAGATION

For only a single mode to be present in a waveguide a certain condition needs to

exist; the excitation frequency must be below the cutoff frequencies of all of the modes
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higher than the first mode.  This is somewhat redundant because the first mode does not

have a cutoff frequency, so the excitation frequency should be below all of the cut-off

frequencies.  The cut-off frequency is the frequency at which the wave number is equal to

zero.  The cutoff frequency also corresponds to the lowest frequency at which a particular

mode appears.  For example, the second mode cutoff frequency for the 0.25-inch cylin-

drical steel rod modeled is 306 kHz.  Below this frequency the second mode has a com-

plex wavenumber and thus decays exponentially with propagation distance.  The cut-off

frequency is more generally expressed as a non-dimensional quantity.  The non-

dimension frequency is expressed as 
tc

a

π
ω

 where a  is the radius, and 
ρ
µ=tc , the

propagation velocity of the transverse or shear wave in an unbound media.  The non-

dimensional cut-off frequency for the second mode is 1.22 when calculated for a Pois-

son’s ratio of 3.0=ν .  The first mode is present at all frequencies, so no cutoff frequency

exists for the first mode.  The single mode waveguide thus corresponds to non-

dimensional excitation frequencies below 1.22.

The simplest case of single mode wave propagation is the limiting condition for a

thin waveguide.  The second limit case, a half-space, can also be directly obtained from

the solution for a waveguide.  Both of the limit conditions, a long thin rod and a half

space, are illustrated by the dispersion curves and the group velocity curves.  The disper-

sion curves in Figure 4.1 illustrate the thin rod limit condition.  As 
π2

ka
 approaches zero,

the solution for a long thin rod is obtained. At the low frequency limit, the dispersion

curves approach a phase velocity that is constant with frequency at a value of 
ρ
E

c =0 .
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Recall, from the one-dimensional solution of longitudinal wave propagation in a thin rod,

this is the velocity of propagation of the non-dispersive wave.  However, as 
π2

ka
 ap-

proaches infinity the conditions for an approach to the thick bar limiting case are more

complex.  To understand the limit case for the half space it is necessary to look at the

group velocity curves as well as the phase velocity curves.  From the group velocity

curves (Peterson, 1994) it is clear that the group velocity of the modes asymptotically ap-

proaches the velocity of propagation of a longitudinal wave in an unbounded media.

However to observe that only the HIGHEST mode is present in the half-space solution it

is necessary to observe that the modes also represent an eigenfunction expansion of the

end conditions from the applied excitation pressure.  For a point load on a traction free

surface of the half-space, the expansion spatially of the applied load corresponds to exci-

tation of only the highest mode.  Thus, only the mode with a group velocity that corre-

sponds to the velocity of a wave in an unbounded media, 
ρ
µλ 2+=dc , is excited.  Ex-

perimental results by Tu (1955) also show that as ∞→
π2

ka
, dp cc → .  Numerically it is

particularly difficult to show that the one-dimensional plane strain wave equation is a

limit condition of the Pochhammer frequency equation.  The thin rod is a far more direct

limit condition of the Pochhammer frequency equation.

To show the single mode, thin rod results, an excitation frequency was chosen to

make the value of 
π2

ka
 close to zero.  This low frequency excitation allows the results of

the FEA to be compared to the one-dimensional analytical solution for a thin rod.   For

the first single mode models a frequency of 10,000 Hz was used, corresponding to a non-
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dimensional frequency of 0.04.  The combination of this frequency and the radius of the

rod produced a radius to wavelength ratio, 
Λ
a

, of 0.02, which correlates to a wavespeed

within 0.01% of the wave speed in a thin bar, c0.

The infinitesimally thin bar solution also requires that the bar be sufficiently long

for the required long wavelengths to travel the bar without reflecting within the window

of interest.  The geometry and boundary conditions were also chosen to help duplicate the

thin rod limit condition.  The first model used a length to radius ratio of 320.  This aspect

ratio is suitable for application of the one-dimensional stress wave solution [e.g. Achen-

bach, 1999].  A constant pressure was applied across the radius to the end of the bar.  The

load shape was a single period of a haversine, defined as ( ))2cos(1
2

)( ft
A

tP π−= .  The

haversine is a single excitation frequency, f , that oscillates between zero and a peak am-

plitude, A .

ABAQUS also has the capability to use infinite elements to simulate a semi-

infinite medium.  For the first test-models, the infinite elements were used at the end of

the regular elements to eliminate the reflection from the free end and help simulate a

semi-infinite bar.  However, it was found that the interface between the finite and infinite

elements also produced a small reflection.  A continuous haversine was applied to the

model described above.  Figure 4.2 shows a plot of stress versus time at a node located at

a position 1/8th of the length of the bar.  For this model, one-dimensional theory for a

long thin rod predicts the reflection should arrive at this position on the bar at 0.3705

msec.  It can be seen that after this time the peaks change due to the influence of the re-

flection. The infinite elements were removed in subsequent models.  The revised models
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were the same length but used finite elements for the entire model.  The model runs were

stopped before sufficient time had passed for the wave to reflect from the free end.
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Figure 4.2: The change in amplitude due to a reflection from infinite elements.

Once an adequate model had been determined, the first experiment was run to

determine the effect of the element size on the accuracy of the FE model.  Models were

run with different aspect ratios and element configurations ranging from 10 elements per

wavelength up to 160 elements per wavelength. All of the models had the same input of a

single haversine and the same time step and length.  For each configuration the peak

stress was measured for the same point on the bar as well as the amount of the overshoot

at the trailing edge of the haversine as shown in Figure 4.3. One-dimensional wave theory

explains that a wave should move without distortion.  Therefore, the closer the peak

stress is to the input amplitude the more accurate the model. Table 4.1 shows the results

of the experiment.
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Figure 4.3: Example of results from the first numerical experiment of a single mode

waveguide.

Elements per
wavelength

Aspect Ratio
length:width

Percent Peak
Stress Error

Calculated Time
step (sec.)

10 1:8 4.651% 7.49E-07
20 1:4 0.860% 7.40E-07
20 1:8 0.864% 3.70E-07
20 1:16 0.864% 1.90E-07
20 1:32 0.860% 9.40E-08
40 1:2 0.161% 7.00E-07
40 1:4 0.111% 3.70E-07
40 1:8 0.102% 1.90E-07
40 1:16 0.102% 9.40E-08
80 1:1 0.036% 6.00E-07
80 1:2 0.039% 3.50E-07
80 1:4 0.024% 1.80E-07
80 1:8 0.020% 9.40E-08
160 2:1 0.002% 4.20E-07
160 1:1 0.002% 3.00E-07
160 1:2 0.001% 1.80E-07
160 1:4 0.000% 9.20E-08

Table 4.1:Effects of element size and aspect ratio on accuracy.

From Table 4.1 it is evident that the number of elements per wavelength has a

larger effect on the accuracy of the results than the aspect ratio of the element.  The cal-
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culated time step in all of the cases shown in the table is the time step calculated by

ABAQUS for that specific element size.  It is also clear from these results that 40 ele-

ments per wavelength is a reasonable starting point for this type of wave propagation

model.  Good accuracy is obtained with an element size ranging from 40 elements per

wavelength to 160 elements per wavelength.

In order to optimize the model it was also necessary to determine an appropriate

time step.  Using one of the cases from Table 4.1, the time step was varied.  The model

selected was chosen to have 40 elements per wavelength and the aspect ratio closest to

one.  In this model the same excitation frequency was used; therefore, only the first mode

propagates and without dispersion.  The error in the total energy was found to increase

with a larger time step, but the error was found to be less than 9.0E-4 in.·lbs. (1.0E-4

N·m) for all cases (results are shown in Table 4.2). This was considered to be a negligible

error for the overall model.  The total energy is the external work minus the calculated

internal energy and kinetic energy, so the value should be zero.  The maximum value of

the internal energy plus the kinetic energy calculated by ABAQUS was 4.975 in·lbs.

(0.5621 N·m) (This value is confirmed analytically in the appendix.)  The largest error

was found to be less than 0.02% of the maximum internal energy plus kinetic energy.

For this particular model the ABAQUS default was approximately 143 time steps per pe-

riod of the wave.  Results for 250 time steps per period showed a good balance between

accuracy and model run time.  For subsequent calculations 250 time steps per period

were used in the calculations.
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Timesteps
per Period

Timestep
(sec.)

Energy Balance
(max) (in.*lbs)

1000 3.60E-09 1.00E-05
500 7.20E-09 3.50E-05
333 1.08E-08 8.00E-05
250 1.44E-08 1.30E-05
200 1.80E-08 2.20E-04
100 3.60E-08 9.00E-04

Table 4.2: Comparison of the effects of time step size on

calculated energy balance error.

Using the results from the study of the sensitivity of the selection of elements per

wavelength and time step, a starting point was obtained for the design of the waveguide

models that include multiple propagating modes.

4.1.2 MULTIPLE WAVEGUIDE MODE PROPAGATION

The initial model for the multi-mode waveguides used a haversine excitation with

a model that was exactly like the single mode models.  In the multi-mode models the ex-

citation frequency used was greater than the cut-off frequency for propagation of the sec-

ond mode.  However, since the haversine used was only a single oscillation of the wave

followed by a large number of zeros, significant energy was required at high frequencies

to produce the zero amplitude portion of the signal.  The existence of the higher fre-

quency components was evident in plots of the stress versus time and stress versus loca-

tion.   What appeared in the results to be noise, was in fact the results of calculations that

involve frequencies much higher than the frequency of oscillation of the single oscillation

of the haversine.  The effects of the higher frequency components obscured the separate

modes that should have been evident as the wave propagated down the bar.  Based on

calculations from the main frequency of the haversine only two modes should propagate.

However, because the signal was significantly more broadband, a large number of modes
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propagated and the time step and element resolution of the model were insufficient for

the actual frequency content of the excitation signal. This broadband signal is also associ-

ated with the “overshoot” in the results observed in the single mode case.

A continuous haversine input signal was thus used to ensure the spectrum of the

input signal was known.  When multiple modes are present the first mode always has the

lowest group velocity (velocity of propagation of energy) and has the shortest wavelength

at a given frequency.  Higher modes travel faster (higher group velocity) and have longer

wavelengths at a particular frequency.  If a model is expected to have an excitation fre-

quency that is greater than the cut-off frequency of a higher mode, then the model must

be configured in a manner that recognizes the presence of shorter wavelengths in the

lower modes and higher group velocities in the higher modes.  The worst case situation

for wavelength and propagation velocity must then be accommodated in selection of ele-

ment size, model length and model run time.  For example, since the first mode has the

shortest wavelength, the size of the elements should be based on the first mode.  How-

ever, the highest mode propagates at the highest group velocity, so the run time of the

model should based on the time it takes for the highest mode to reach the end of the

model.  As a result, higher frequencies result in smaller element sizes to accommodate

the shorter wavelengths.

4.1.3 DISPERSION CURVES

For the multi-mode waveguides, points on the dispersion curves were compared

to the analytical results to verify the accuracy of the numerical models.  Analytical dis-

persion curves were calculated based on the Pochhammer frequency equation.  Newton’s
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method was used in a Matlab program to calculate dispersion curves for the first four

modes (Figure 4.1).

The numerical FE model for the multi-mode waveguide was completed based on

the modeling criteria that was determined from the single mode models.  Running models

with only a single excitation frequency produced a preliminary set of dispersion curves.

Each model was excited by a single excitation frequency from a continuous haversine

input signal.  The excitation frequency excited all of the modes whose cutoff frequencies

were below this excitation frequency.  Each excited mode produced a point on that

mode’s respective dispersion curve.

The wave numbers were determined by taking a discrete Fourier transform (DFT)

(using a fast Fourier transform, FFT, algorithm where appropriate) of the stress versus

location data.  The phase velocities, pc , were determined from the frequency,ω , and the

wavenumber, k :

pck /ω= (4.1)

In order to obtain the dispersion curves that are directly comparable to the analytical re-

sults the results were plotted for a range of frequencies.

In order to obtain sufficient accuracy with the discrete Fourier transform used to

determine the points on the dispersion curves, a sufficient number of points had to be cal-

culated in the numerical model.  An increase in the number of points at a fixed sampling

distance on the bar corresponds to an increase in the resolution of the transformed vari-

able.  In this case the spatial variable, z, is transformed into the wavenumber, k.  The

transform pair is:

{ } ∑
−

=

−=⇒
1

0

)/2(][][)(
N

z

zkNjezkXzF πσσ 1,...,1,0 −= Nk  (4.2)
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for the transformation of the stress versus distance into the wavenumber domain.  In or-

der to obtain the required resolution however it is important to be cautious regarding the

required model size.  Although a longer model gives a higher resolution in the wavenum-

ber domain, the increase in computational time does not increase linearly with an increase

in length.  If a model is doubled in length, the computation time increases by a factor of

four.  The longer model has twice the number of elements and the number of time steps

required for the wave to reach the end of the bar has also doubled.

However, if the disturbance, or elastic wave, has compact support in the time do-

main, the remaining data in the time record consists entirely of zero values.  Therefore, an

alternative to making the model longer is to simply pad the data from the numerical

model with zero values.  Zero padding consists of adding zeros to the end of the data.

Zero padding is often used to make the number of data points a power of two, which al-

lows the original Cooley-Tukey FFT algorithm to be used (Cooley-Tukey, 1965).  In this

application as in other cases where function has compact support, the time domain signal

is of finite extent.  Zero padding effectively makes the bar longer.  The result is new data

that interpolates the results from the DFT algorithm.  More accurate wavenumbers are

then obtained because of the ability to find the peak values in the transformed data.  Zero

padding will also cause additional low wavenumbers to appear.  These additional

wavenumbers can obscure the results of small amplitude low wavenumbers correspond-

ing to excited modes.  Figure 4.4 illustrates the effects of zero padding on the Fourier

transform of the spatial data.  In Figure 4.4 the second and third mode wave numbers are

shown at a frequency that is just below the cut-off frequency for the fourth mode.
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Figure 4.4: Example of the effects of zero padding.

4.1.4 PARAMETER REFINEMENT

It was apparent that the FE model used thus far had not been optimized suffi-

ciently.  For the highest excitation frequencies in the desired frequency range the model

would take a very long time to run.  In order to decrease the time required to run the

model at high frequencies while maintaining acceptable accuracy, the parameters had to

be explored more finely.  Numerical experiments were performed to determine a more

accurate minimum acceptable number of elements per wavelength.  The experiment to

determine the time step was repeated with the new number of elements per wavelength.

Finally, a minimum bar length required for acceptable results was also considered.
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The first experiment explored the number of elements per wavelengths more

closely.  A frequency was chosen that would excite the first three modes and a standard

model was used.  Five element sizes were used that produced a range of elements per

wavelength between 11 and 41.  Extensive zero padding was used with the FFT to help

accurately determine the peaks.  Table 4.3 shows the accuracy of each mode compared

with the analytical solution.

Elements per
wavelength

Percent
Error K1

Percent
Error K2

Percent
Error K3

41 0.3% 0.2% 0.5%
29 0.6% 0.3% 0.4%
23 0.9% 0.4% 0.9%
17 1.7% 0.7%* 3.4%
11 4.0% 2.1%* 6.8%

Table 4.3: Accuracy of elements per wavelength for multiple mode propagation.

From Table 4.3 it is evident that 30 elements per wavelength maintains reasonable

accuracy, around 0.5%.  Below 20 elements per wavelength the accuracy drops off rap-

idly.  One interesting observation is that the third mode accuracy decreases as fast as the

first mode accuracy.  The third mode has a significantly longer wavelength and therefore

has more elements per wavelength in the same model.  Based on considerations of ele-

ments per wavelength, the third mode calculations should be very accurate. With even the

coarsest mesh the third mode has more than 80 elements per wavelength.  However, the

wave number calculated for the third mode is small, and the effects of the Fourier trans-

form are a more significant factor.  The values calculated for the second mode, in con-

trast, seem more reasonable.  In Table 4.3 asterisks indicate that values were recorded

from the initial Fourier transform without zero padding.  With zero padding the

wavenumbers were obscured, so in these cases the signal without zero padding was used

to find the wavenumbers.
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Since a revised number of elements per wavelength was chosen, the number of

time steps per period was also reinvestigated.  The model for this experiment had 30 ele-

ments per wavelength.  The excitation frequency was such that only the first mode

propagated, but the peak frequency was still sufficiently high that the wave exhibited dis-

persive characteristics.  The number of time steps per period was varied between 300 and

75.  Again, the error in the total energy was found to increase with a larger time step, but

the error was found to be less than 4.0E-4 in.·lbs. (0.4519 Nm) for all cases (results are

shown in Table 4.4). This was also considered to be a negligible error for the overall

model.  The total energy is the external work minus the calculated internal energy and

kinetic energy, so the value should be zero.  The maximum value of the internal energy

plus the kinetic energy calculated by ABAQUS was 3.5 in·lbs. (0.3954 Nm), and this

value is confirmed analytically in the appendix.  The largest error was found to be less

than 0.01% of the maximum internal energy plus kinetic energy.  A similarly small effect

was found from varying the time step when calculating the wave numbers.  For this par-

ticular model the ABAQUS default was approximately 95 time steps per period of the

wave.  Results for 200 time steps per period showed a good balance between accuracy

and model run time.  For subsequent calculations 200 time steps per period were used in

the calculations.

Timesteps
per Period

Timestep
(sec.)

Energy Balance
(max) (in.*lbs)

K1 Value
(1/inch)

300 1.20E-08 3.50E-05 2.0004
250 1.44E-08 4.50E-05 2.0003
200 1.80E-08 5.50E-05 2.0002
150 2.40E-08 9.00E-05 2.0000
100 3.60E-08 2.00E-04 1.9995
75 4.80E-08 3.50E-04 1.9989

Table 4.4: Comparison of the effects of time step size on calculated energy balance

error and wavenumber.
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The last set of numerical experiments was designed to determine the length of the

bar required for obtaining adequate mode separation.  To determine a minimum bar

length a single model was run for a long bar.  The excitation frequency used excited the

first three modes.  Wavenumbers were calculated from results at different times.  Each

time effectively corresponded to a bar with a different length, Fig. 4.5.  At the first time

increment the wave front had traveled almost 20 inches (508mm, 80 radii). The results

obtained for this time increment were equivalent to a bar of this length.  Zero padding

was used to increase the wavenumber resolution.  The results were recorded at three ad-

ditional times corresponding to bar lengths of 160, 240, and 320 radii.  The wavenumbers

were calculated to determine the accuracy of the solution for each bar length.  Table 4.5

shows the numerical results compared to results from the analytical solution.

Length to Ra-
dius Ratio

Percent
Error K1

Percent
Error K2

Percent
Error K3

80 0.23% 0.23% NA
160 0.31% 0.20% NA
240 0.31% 0.20% 0.84%
320 0.33% 0.20% 0.51%

Table 4.5: Effect of length on mode separation.
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Figure 4.5: Illustration of relationship of time to effective bar length.

Table 4.5 indicates that a smaller length to radius ratio does not affect the accu-

racy of the wave number, provided that zero padding is used.  However, if a wave num-

ber is small enough, it may be obscured by the additional peaks at low wavenumbers in-

troduced by the zero padding.  This is the case for the third mode at this frequency.

After the series of numerical experiments, three parameters were identified as

necessary for modeling multi-mode wave propagation in rods.  At least 30 elements per

wavelength should be used to provide the required spatial resolution.  The element size is

determined from the wavelength of the first mode at the highest excitation frequency.

The wavelengths associated with higher modes are longer and are thus satisfied automati-

cally.  The time step should be at least as small as the time step calculated by ABAQUS

if there are at least 30 elements per wavelength; however, a time step equivalent to
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1/200th of the smallest period of the excitation frequency is recommended.  Finally, the

length of the bar should be at least 80 radii long in order to obtain accurate wavenumbers

without problems associated with reflection from the free end of the bar.

4.2 Validation

More complete determination of the dispersion curves was based on the modeling

parameters from the preliminary study.  The dispersion curves were created from a num-

ber of FE models of a number of sizes.  Three sets of dispersion curves were created.

The first set of dispersion curves was created from a large number of models each having

a different single excitation frequency.  The second set of dispersion curves was created

from a single model run many times, each time with a different excitation frequency.

The third set of dispersion curves was created from a single model with a broadband ex-

citation signal.

4.2.1 SINGLE FREQUENCY DISPERSION CURVES

All of the models for the first set of dispersion curves had a length to radius ratio

of at least 80, but the element size and time step varied. All of the models had a minimum

of 30 elements per wavelength for all of the propagating modes.  Therefore at higher fre-

quencies the required element size was much smaller. Table 4.6 indicates the element

size and number of elements for several of the models used for these dispersion curves.

Figure 4.6 shows the dispersion curves calculated with the FE model compared to the

dispersion curves calculated from the Pochhammer frequency equation.  The match be-

tween the results is very good.  Slight variability is evident at low frequencies, and some

band limited characteristics are evident.
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Figure 4.6: Dispersion curves from models with more than 30 elements per wave-

length (analytical solution – thin line, FE results – thick line).

Freq. (kHz) Element Config.

333.3 20x6400
384.6 24x1920
434.8 28x2240
500.0 32x2560
555.6 36x2880
588.2 40x3200
666.7 45x3600
714.3 50x4000
769.2 60x4800

 Table 4.6: Element configurations for various frequencies (a = 0.25 inch, 6.35 mm).
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To show the effect of reducing the number of elements per wavelength, an alter-

native set of dispersion curves was created.  In the modified approach, the same model

was used for all excitation frequencies, although, a single frequency excitation was still

used.  A model with the same number and size of elements was used for every excitation

frequency between just below the 2nd mode cut-off frequency and the 5th mode cut-off

frequency.  Because the model retained the same configuration for all of the excitation

frequencies, the number of elements per wavelength for the first mode ranged between 34

at the lowest frequency and 10 at the highest frequency.  The dispersion curves calculated

using a consistent model are compared to analytical dispersion curves, Figure 4.7.
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Figure 4.7: Dispersion curves from a single model (analytical solution – thin line, FE

results – thick line).
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As expected at higher frequencies the accuracy of the FEA decreases due to fewer

elements per wavelength.  The higher mode dispersion curves appear to diverge from the

analytical dispersion curves before there are less than 30 elements per wavelength.  The

30 element per wavelength threshold is shown as a vertical line.

4.2.2 BROADBAND DISPERSION CURVES:

To more realistically verify the modeling parameters identified for wave propaga-

tion in a cylindrical rod, a broadband model was considered.  The broadband model made

it possible to produce a set of dispersion curves from a single model.  The broadband sig-

nal included frequency content from zero up to the fifth mode cut-off frequency.  Thus

four modes were present in the model.

Use of broadband excitation adds some complexity when determining the points

for the dispersion curves.  For the models that used a single excitation frequency, a Fou-

rier transform could be applied to the stress versus location data3 to determine the wave

numbers associated with that excitation frequency.  If the same procedure was employed

with results from the broadband model it would not be possible to determine which wave

numbers belonged to particular frequencies.  Therefore, an extra step is required.

For the broadband model, stress versus time data was recorded at equally spaced

points along the bar.  The effective result from this approach is that for each point along

the bar a frequency spectrum in time is created by the use of a Fourier transform.  The

shape of the amplitude of the frequency spectrum for each point along the bar was differ-

ent; however, the spectrum was calculated for the same frequencies at each point.  For

each frequency, a wavenumber spectrum in the space domain was then created.  The am-

                                                          
  3 The data was recorded at a time when the first wave was near the end of the bar.
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plitude of a certain frequency was taken from each of the frequency spectrums for the

points along the bar.  These points were used to create the wavenumber spectrum in the

space domain using another Fourier transform or another spectral analysis method.  From

the spectrum in the space domain the wavenumbers were determined for each frequency

and dispersion curves were plotted.  This process is illustrated in Figure 4.8 with an FFT

in the space domain.  Simply put, a Fourier transform is performed in time and then in

space.  The transform pairs appear in eqns. 4.4, 4.5, 4.6, 4.7.

Figure 4.8: Graphical representation of the spectral analysis for broadband results.
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The first broadband input signal used was a Gaussian.  The Gaussian is defined as
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below the cut-off frequency of the 5th mode. The parameters that determine a frequency

range of 0 to 800 kHz are:

• Center frequency, kHzf 400=
• Frequency range, kHz8001 =σ

These parameters produce the signal in the upper left graph of Figure 4.9.  The

upper right graph of Figure 4.9 shows the frequency spectrum of the signal.  The ma-

nipulation of the Gaussian distribution is discussed in the appendix.

After running many models it was found that the Gaussian broadband signal was

not providing adequate results.  For any particular frequency, wavenumbers could rarely

be determined.  An alternative broadband signal consisting of the superposition of many

frequencies was used instead, eqn 4.9.  This broadband signal only contained discrete
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frequencies.  Better results were generated with this broadband signal.  Figure 4.9 illus-

trates the difference between the signal and frequency spectrum of the Gaussian broad-

band signal and the superposition of sine waves broadband signal.  A narrow band signal

is also shown for comparison.
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Figure 4.9: Broadband signal and frequency spectrum comparison (top – Gaussian,

middle – superposition of sine waves, bottom – narrow band, single frequency).

Although the Gaussian broadband signal did not produce adequate results for dis-

persion curves it did demonstrate nicely the separation of the modes over time.  Figure

4.10 shows the stress versus time and location versus time for a model with a Gaussian

input with a frequency range between the second mode cutoff frequency and the fourth

mode cutoff frequency (300 – 500 kHz for this case). There is obvious mode separation

between the first three modes.  This model had a length to radius ratio of 1080.  However,

the larger length required the element size to be large.  At nearly all modes and frequen-

cies less than 30 elements per wavelength were used in the model.  Thus, the results

showed considerable error.  However, the results should be qualitatively correct.
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Figure 4.10: Mode separation from Gaussian broadband input signal.

Besides the broadband signal, there were also some issues with the spectral analy-

sis.  In the first test models, Prony’s method was used to find the wave numbers for each

frequency.  Prony’s method is a way of fitting a function of exponentials to a series of

data.     However, it was proving difficult to get accurate results4.  Vollmann, Breu, and

Dual (1997) used Prony’s method to plot points for dispersion curves from experimental

data.  Prony’s method was chosen rather than a direct implementation of the discrete Fou-

rier transform because of the lack of resolution from the data points with a direct imple-

mentation. Prony’s method is better able to isolate signals from noise.  However, since all

                                                          
  4 Prony’s method was performed on the data from one of the original models that only had a single exci-
tation frequency.  It was found that the results from Prony’s method were not as accurate as the results from
the Fourier transform.
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of the data shown is from finite element analysis, noise should be negligible. Zero pad-

ding also works well for improving the frequency resolution of the results.  Alleyne and

Cawley (1990) have shown the use of a two-dimensional discrete Fourier transform to

calculate dispersion curves from both experimental and FEA results for Lamb waves.

Lamb waves occur in plates and like the waves in the circular cross-sectional cylinder can

propagate in multiple modes and show dispersion for higher modes.  Alleyne and Cawley

concluded that the two-dimensional Fourier transform is applicable to multi-mode propa-

gation with dispersive effects and made use of zero padding to increase frequency reso-

lution.  Ultimately a Fourier transform in the time domain and then in the space domain

was used to calculate points on the dispersion curves.

In the broadband model additional problems arose exciting all of the modes and

finding all of the wave numbers that should exist for each frequency.  At the higher fre-

quencies the wave numbers could not be determined for all of the modes since no obvi-

ous peaks appeared in the transform.  For the single frequency set of dispersion curves,

the problem was solved by applying the excitation frequency to only the inside half of the

radius, eqn. 4.10 and 4.11.  In this case most of the modes were excited and the

wavenumbers were determined.  For the broadband excitation the first half of the radius

was also excited; however the wave numbers associated with the higher modes at the

higher frequencies were not always obtained.  Applying the excitation frequency to other

combinations of elements on the face did not improve results.
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By considering the radial stress distribution for the modes of interest, a more rea-

sonable explanation was obtained for the absence of wavenumbers.  From a number of

references, the change in shape of the modes with increasing frequency may be found

(Zemanek, 1972, etc.)  The higher order modes have stress that is localized in the center

of the bar. The data that was initially used to find the wave numbers was from the axial

stress at the surface of the bar. The magnitude of the stress/displacement at the surface is

significantly smaller for some modes at some frequencies.  Because finite element analy-

sis makes it possible to characterize stresses at elements and displacements at nodes

throughout the model this situation may be addressed.  Wave numbers were thus deter-

mined from results at ¼, ½, and ¾ of the radius and at the surface of the bar.  From these

multiple locations it was possible to determine wave numbers for all modes at the full

range of frequencies.

Extra peaks that did not correspond to a particular wave number were also evident

in the transformed domain. These extra peaks were influenced by the input signal.  It was

found that if the difference in frequency between consecutive frequencies in the input

signal was equal to or smaller than the reciprocal of the run time of the model, the extra

peaks were reduced or disappeared.  Figure 4.11 shows the wave number spectrum cal-

culated at 440 kHz for identical models with different broadband signals.  The top model

had 80 frequencies equally spaced over 800 kHz corresponding to a 10 kHz frequency

step.  The bottom model only had 40 frequencies over the same range corresponding to a

20 kHz frequency step.  The run time was 0.0001 seconds, so the reciprocal was 10 kHz.

However, at higher frequencies both models exhibited extra peaks.  The calculated ve-

locities for these extra peaks remained constant as the frequency increased.  The extra



47

peaks appear to be a consequence of model geometry, and a better understanding will re-

quire future research.

Figure 4.11: Example of wave number spectrum from broadband signal

The final model used the same modeling parameters as the calculations for the

first set of dispersion curves.  The model used a length to radius ratio of 80.  The element

size was chosen so the smallest wavelength in the excitation had at least 30 elements per

wavelength. A time step of 1/200 of the smallest period was also used.  The broadband

input signal consisted of 80 frequencies equally spaced between zero and 800,000 Hz su-

perimposed.  Using this input the model had 288,000 elements and 20,000 time steps,

which took over 18 hours to run on the computer Columbia.  The model used over 250

megabytes of RAM, and produced output files requiring over two gigabytes of disk
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space.  Most of the output files could be deleted upon completion of run.  Figure 4.12

shows dispersion curves calculated from the results.
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Figure 4.12: Dispersion curves from broadband model (analytical solution – thin

line, FE results – thick line).
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5. CONCLUSIONS

This thesis is an investigation into the proper application of explicit FEA model-

ing to the description of elastic waves in solids.  The sensitivity to the modeling parame-

ters and the validation of the results were investigated.

5.1 Parameters

The modeling parameters used and which were validated required that 30 ele-

ments per wavelength be used for the smallest wavelength and that there be 200 time

steps per the smallest excitation period.  For the problem considered, less than a 2% accu-

racy gain would be expected by any further decrease in the time step or element size.

However, for the problem considered, the physics of the problem are clearly captured

when 30 elements per wavelength are used.  If the resolution is decreased the loss of ac-

curacy may result in a loss of physical meaning for the results.

The number of elements per wavelength has the most profound affect on the accu-

racy of the results.  The changes in accuracy are illustrated in the three sets of dispersion

curves calculated from the FEA.  The dispersion curves calculated from the multiple

models can be considered as a baseline for the expected accuracy of the FEA results

(Figure 4.5).  For the dispersion curves calculated from the single model, only the lowest

frequency considered had 30 elements per wavelength.  As the frequency increased the

number elements per wavelength decreased.  The dispersion curves show that the accu-

racy decreases as the number of elements per wavelength decreases (Figure 4.6).  Simi-
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larly, for the broadband dispersion curves, the wavelength corresponding to the highest

frequency was the only wavelength to have only 30 elements per wavelength.  All other

wavelengths had more than 30 elements per wavelength (Figure 4.10).  The increased

accuracy is evident from a comparison between the broadband dispersion curves and the

multiple model dispersion curves.

The accuracy of the first mode also seems to affect the accuracy of the higher

modes.  Based on the dispersion curves created from the single model, the first mode di-

verged near 30 elements per wavelength, but the other modes diverged well before 30

elements per wavelength.  The accuracy of the higher modes diverged near the frequency

at which at the accuracy of the first mode diverged.  This would imply the accuracy of the

first mode affects the accuracy of the higher modes.  The interaction of the accuracies of

the modes is a key result of this work.  This suggests that the physics of the problem are

captured by the resolution of the most sensitive portion of the modeling.  Once the first

mode is no longer resolved, the mode conversion at the bar sides breaks down and the

problem becomes physically less descriptive.  Hence an absence of a recognition of the

effects of multiple modes propagating in a model can result in erroneous results due to

improper calculation of wavelengths, and result in errors in using a sufficient number of

elements per wavelength.

Issues also arose concerning the time step.  Since ABAQUS calculates the time

step using the element size, if the element size is small enough then the time step calcu-

lated by ABAQUS is sufficiently short as well.  The time step is calculated based on the

time for a wave with a wave speed of a longitudinal wave in an unbounded medium to

travel across an element.  The use of a longitudinal wave in an unbounded media for the

time step calculations is reasonable, but may lead to an insufficiently short time step.  All
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of the higher modes travel faster than the longitudinal wave speed at certain frequencies,

so a smaller time step may be necessitated.   In all of the models presented the time step

was calculated by dividing the period of the smallest excitation frequency by at least 200.

The time step was consistently smaller than the time step calculated by ABAQUS.

These parameters should be applicable to non-cylindrical geometries.  However,

the shortest wavelength may not be known even if the highest excitation frequency is

known.  A conservative value for the shortest wavelength can be calculated using the

wave speed of Rayleigh surface waves.  From this wavespeed and the highest excitation

frequency a value for the wavelength can be calculated.

5.2 Wavenumbers

In order to verify the results, wavenumbers calculations had to be made from the

FEA results.  Two issues related to the calculation of the wavenumbers used for the dis-

persion curves were identified.  The first issue was the length of the bar/model.  The bar

had to be long enough to allow the modes to separate.  For the single frequency models, a

bar 80 radii long was a sufficiently long enough bar.  For the broadband model 80 radii

was also found to be sufficient.  However, both required zero padding (in the FFT in the

space domain) to ensure accurate wavenumbers.  A longer bar is usually better because of

the increased number of data points.  The power contained in the noise also increases

with length though, so an optimal bar length that does not greatly exceed the signal length

is optimal.

The second major issue associated with wavenumbers was exciting all of the

modes and finding the complete set of wavenumbers.  For the sets of dispersion curves

there was trouble exciting all of the modes.  It was found that applying the excitation fre-
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quency to only the inside half of the radius was sufficient to excite all of the modes.  For

the broadband model however a problem was encountered in determining the wavenum-

bers for all of the modes at the higher frequencies.  The amplitude of the stress wave

varies through the radius of the bar based on the mode shape.  The shape of the propa-

gating mode also changes with frequency.  Points exist through the radius where the am-

plitude is zero or quite small.  If the radial location selected for calculations is at a low

amplitude point the mode may not appear above the noise in a wavenumber spectrum.

To ensure that the wavenumber appears in the Fourier transform, data for each mode

must be recorded at a point on the radius where the amplitude of the stress is near a

maximum.  Alternatively, a radial summation of the stress may be possible that effec-

tively mimics the effect of a finite sized sensor such as an ultrasonic transducer.

For each mode a point along the radius was found that produced good wave num-

ber results for a large frequency range.  For the first mode, data recorded at the surface

will produce good wavenumbers for all but a small range around 375.=
Λ
a

.  The second

and third modes are well represented by a point at a⋅4
3 .  Finally the fourth mode is best

determined from a combination of data from a⋅4
1  and a⋅2

1 .  Further work is needed

to develop techniques for selecting these points based on propagating mode shapes

known from the analytical solution.

The final issue related to the calculation of the wavenumbers was the distinction

between the mode wavenumbers and the extra peaks in the wave number spectrum.  The

extra peaks appeared with use of a broadband signal that contained a superposition of

sine waves.  It was found that if the frequency step, which is also the lowest frequency,
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was less than or equal to the reciprocal of the run time of the model, the extra peaks were

smaller or disappeared.

5.3 Broadband Signal

Additional issues emerged regarding the broadband input signals.  The selection

of broadband excitation signals must be made considering the trade-offs in the results.

The Gaussian broadband signal is a simple analytical signal that is closest to a signal that

would be encountered out of a laboratory environment.  However, the Gaussian was

found to produce poor results in this application.  It is reasonable that because of the con-

tinuous frequency spectrum the model requires a longer bar for adequate mode separa-

tion.  The other broadband frequency was the superposition of the sinusoids.  This signal

is most like a chirp signal used in vibration testing but is hard to reproduce at the fre-

quencies considered.  The discrete frequencies produce good wavenumber results with

minimal analysis.

5.4 Summary

Modeling parameters developed from this thesis were found to be accurate, to

within 1%,  while minimizing the computational expense. These parameters include:

• 30 elements per smallest wavelength,
• 200 time steps per smallest excitation period,
• minimum bar length of 80 radii

Additionally, the results of this thesis demonstrate that:

• a two-dimensional discrete Fourier transform can be used to obtain disper-
sion curves from FEA results,

• barriers continue to exist in the modeling of broadband excitation signals,
• careful consideration of mode shape should be made to ensure sufficient

data is processed,
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• modeling should be based on worst case modes, highest mode for model
length, lowest mode for element size.

Continuing research should include determining the effects of element aspect ratio, de-

termining the best spectral analysis methods, determining the best broadband signal, de-

termining the best location in the bar to record data, and finally, determining the best data

to record.
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1. COMPUTER BENCHMARK

The model for this benchmark is an axisymmetric rod, 8 elements by 2560 ele-
ments.  The rod has a 0.25 inch radius and a length of 80 inches, so the elements are
square.  The timestep is 2.5E-8 seconds, and the run time is 3.6E-4 seconds.  Therefore,
there are 14,400 timesteps.  The material properties used were those of mild steel.  The
centerline was fixed in the radial direction, and a continuous haversine was applied to one
end of the bar with a period of 1.8E-5 seconds.

The following table shows the computational times for both computers. The larg-
est model is also included for comparison.  Element Calculations is the number of ele-
ments times the number of timesteps.

Benchmark Model Largest Model Large/Benchmark
Element Calculations 294,912,000 5,760,000,000 19.5
Colorado – 2 Mb cache 1:06:51 (hms) 23:40:57 (hms) 21.26
Columbia – 4 Mb cache 51:16 (hms) 18:11:17 (hms) 21.28

The table indicates that an increase in time is nearly linear with an increase in
element calculations.  The extra time is most likely due to data storage and manipulation.

1.1 ABAQUS Input File

*HEADING
AXIALLY APPLIED HAVERSINE PRESSURE LOAD ON AXISYMMETRIC CYLINDER
*NODE
1,0.,0.
9,.25,0.
23041,0.,80.
23049,.25,80.
*NGEN, NSET=END
1,9
*NGEN, NSET=MID
23041,23049
*NFILL, NSET=ALL
END,MID,2560,9
*NSET,NSET=CENTERL, GENERATE
1,23041,9
*NSET,NSET=DATA, GENERATE
5,23045,9
*NSET,NSET=ROW, GENERATE
5,23045,1440
*ELEMENT, TYPE=CAX4R, ELSET=SOLID
1,1,2,11,10
*ELGEN, ELSET=SOLID
1,8,1,1,2560,9,8
*SOLIDSECTION, ELSET=SOLID, MATERIAL=STEEL
*MATERIAL, NAME=STEEL
*ELASTIC
30.0E6, 0.3
*DENSITY
7.32E-4
*ELSET, ELSET=ROW, GENERATE
4,19204,1280
*ELSET,ELSET=DATA, GENERATE
4,20476,8
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*ELSET, ELSET=FACE, GENERATE
1,4,1
*BOUNDARY
CENTERL,1
*STEP
CONTINUOUS HAVERSINE PRESSURE INPUT
*DYNAMIC, EXPLICIT, DIRECT USER CONTROL
2.5E-8,3.6E-4
*BULK VISCOSITY
0.0
*DLOAD
FACE,P1NU,1.0
*OUTPUT, FIELD, NUMBER INTERVAL=200
*ELEMENT OUTPUT, ELSET=DATA
S
*NODE OUTPUT, NSET=DATA
U
*END STEP

1.2 ABAQUS User File

****5****10***15***20***25***30***35***40***45***50***55***60***65***70***
*  FORTRAN SUBROUTINE FOR A HAVERSINE LOAD FUNCTION
**************************************************************************

subroutine vdload(nblock, ndim, stepTime, totalTime, amplitude,
     1  curCoords, velocity, dirCos, jltyp, value)
*

include ’vaba_param.inc’
*

dimension curCoords(nblock,ndim), velocity(nblock, ndim),
     1  dirCos(nblock,ndim,ndim), value(nblock)
*
        data pi /3.141592653589793/

data T /1.8E-5/
*

do 100 km = 1, nblock
   value(km)=10000.0*0.5*(1.0-cos(2.0*PI*stepTime/T))

100 continue
*

return
end
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2. ENERGY VERIFICATION

2.1 Calculation of External Work from a Continuous Haversine

Approximate a semi-infinite bar with a finite bar.  Apply a pressure function of a con-
tinuous haversine.
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Just after one period the front of the wave is at a distance one wavelength from the end of
the bar.  At this point there is no displacement, so this is equivalent to the fixed end of the
bar.  Therefore, Λ=L .  For this frequency 4981.0≅Λ , 1222.0=⇒ TW .  This is the
work for one period of the haversine pressure function.  The run time of the model was
1.0E-4 seconds, and the period of the haversine was 3.6E-6 seconds.  Therefore, there are
27.778 periods of the haversine in the bar at the end of the run time.

3944.3778.27 =⋅=∴ Ttotal WW .  ABAQUS calculated approximately 3.5.  This is about a

three percent difference.  The energy calculation by ABAQUS seems correct.
For the single haversine time step experiment, 24.20101202444 4

0 =×⋅=⋅=Λ −Tc .

24.202454.0 ⋅=TW     967.41 =⋅=∴ Ttotal WW .  ABAQUS calculated 4.975.



A4

3. MATLAB CODE FOR ANALYTICAL DISPERSION CURVES

3.1 Dispersion.m

%*****************************************************************
% DISPERSION.M
%*****************************************************************
% This Matlab file runs all the m-files needed to produce the
% dispersion curves for a solid isotropic cylinder.
%
% This program only calculates dispersion curves for real wave
% numbers.
%
% The user enters the number of modes desired and the material 
% properties.  The cutoff frequencies are calculated and then 
% the dispersion curves are calculated.
%
% This file calls the following Matlab files
% prop.m - asks for user input
% cutoff.m - calculates cutoff frequencies for requested 
%    number of modes
% dispcurv.m - calculates and plots dispersion curves
%
% Written by Anthony Puckett March 2000, based on Matlab code 
% for a two layered cylinder written by Rich Laverty.
%
%*****************************************************************

prop
cutoff
dispcurv

%*****************************************************************
%  end of script
%*****************************************************************

3.2 Prop.m

%*****************************************************************
% PROP.M
%*****************************************************************
% This Matlab file asks for the material properties, the number
% of modes.
% 
% Written by Anthony Puckett, March 2000, based on Matlab code 
% for a two layered cylinder written by Rich Laverty.
%
%*****************************************************************
%             MATERIAL PARAMETERS
%*****************************************************************
% a - radius
% E - modulus of elasticity
% rho - density
% nu - Poisson’s ratio
% lambda - Lame constant
% mu - lame constant
% cd - dilitational wave speed in unbounded media
% ct - tranverse wave speed in unbounded media
%*****************************************************************

a = input(’What is the radius of the cylinder?  ’);
E = input(’What is the modulus of elasticity of the cylinder?  ’);
rho = input(’What is the density of the cylinder?  ’);
nu = input(’What is Poissons ratio?  ’);
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lambda = nu*E/((1+nu)*(1-2*nu));
mu = E/(2*(1+nu));
cd = sqrt((lambda+2*mu)/rho);
ct = sqrt(mu/rho);

%*****************************************************************
%             NUMERICAL PARAMETERS
%*****************************************************************
% num - the number of modes to calculate dispersion curves
% success - the number of times in a row that Newton’s method
%     must meet tolerance for the iteration to stop 
% tol - the tolerance on Newton’s method
% maxiter - the maximum iterations of Newton’s method 
%*****************************************************************

num = input(’For how many modes would you like to see dispersion curves?  ’);
success=4;
tol=0.001;
maxiter=1000;

save properties

%*****************************************************************
%   end of script
%*****************************************************************

3.3 Cutoff.m

%*****************************************************************
% CUTOFF.M
%*****************************************************************
% This Matlab file computes the cutoff frequencies for the 
% requested number of modes (num).
%
% The frequency equations are those derived by Redwood(1960)
% pg. 145 eqns. 6.24 and 6.25.  The former calculates the 
% dilitational modes and the latter the transverse modes.
%
% Newton’s method is employed to iterate to the final solutions.
% The roots of the bessel functions follow the general approx.
% r(n+1) = r(n) + 3 where r() is a root.  Newton’s method will 
% iterate for each integer up to 3*num.  There will be several 
% duplicates and triplicates, and those are removed.  Finally, 
% the dilitational and transverse modes are put together, 
% sorted, and the first num modes are selected.
%
% Written by Anthony Puckett, March 2000, based on Matlab code 
% for a two layered cylinder written by Rich Laverty.
%
%*****************************************************************
%           Initialize Variables
%*****************************************************************

load properties

%*****************************************************************
% Dilitational Modes
%*****************************************************************
% The cutoff frequencies for the dilitational modes are found
% and the duplicates are removed.
% 
% freqd - cutoff frequency equation for the dilitational modes
% dfreqd - the derivative of freqd
% subd - a substitution to make the line shorter
% broots - the roots of the dilatational cutoff frequency eqn.
% freqsdil - the cutoff frequencies of the dilitatinal modes
%*****************************************************************
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%*****************************************************************
% Roots found with Newton’s method
%*****************************************************************

counter=1;
for x=1:1:3*num
  iter=0;
  goodcount=0;
  while goodcount<success & iter<maxiter
    freqd=x*(besselj(0,x)/besselj(1,x))-2*(ct/cd)^2;
    subd=(-besselj(1,x))*besselj(1,x)-besselj(0,x)*(0.5*(besselj(0,x)-besselj(2,x)));
    dfreqd=(besselj(0,x)/besselj(1,x))+x*(subd/(besselj(1,x)*besselj(1,x)));
    newx=x-freqd/dfreqd;
    if abs(newx-x)<tol
      goodcount=goodcount+1;
    else
      goodcount=0;
    end
    iter=iter+1;
    x=newx;
  end
  broots(counter)=x;
  iters(counter)=iter;
  counter=counter+1;
end
broots=sort(broots);

%*****************************************************************
% Eliminate repeated roots in array broots and write to array
% cutoffd
%*****************************************************************

cutcount=1;
for n=1:1:length(broots)
  if n==1
    cutoffd(1)=broots(1);
    cutcount=2;
  elseif abs(broots(n)-cutoffd(cutcount-1))>tol
    cutoffd(cutcount)=broots(n);
    cutcount=cutcount+1;
  end
end

cutoffd=real(cutoffd);
cutoffd=sort(cutoffd);

%*****************************************************************
% Calculate the cutoff frequencies from the roots.
%*****************************************************************

for n=1:1:length(cutoffd)
  freqsdil(n)=cutoffd(n)*cd/(a*2*pi);
end

%*****************************************************************
% Transverse Modes
%*****************************************************************
% The cutoff frequencies for the transverse modes are found
% and the duplicates are removed.
% 
% freqt - cutoff frequency equations for the transverse modes
% dfreqt - the derivative of freqd
% broots - the roots of the dilitational cutoff frequency eqn.
% freqstran - the cutoff frequencies of the dilitatinal modes
%*****************************************************************

%*****************************************************************
% Roots found with Newton’s method
%*****************************************************************

counter=1;
for x=1:1:3*num
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  iter=0;
  goodcount=0;
  while goodcount<success & iter<maxiter
    freqt=besselj(1,x);
    dfreqt=0.5*(besselj(0,x)-besselj(2,x));
    newx=x-freqt/dfreqt;
    if abs(newx-x)<tol & abs(freqt)<1.0
      goodcount=goodcount+1;
    else
      goodcount=0;
    end
    iter=iter+1;
    x=newx;
  end
  broots(counter)=x;
  iters(counter)=iter;
  counter=counter+1;
end
broots=sort(broots);

%*****************************************************************
% Eliminate repeated roots in array broots and write to array
% cutofft
%*****************************************************************

cutcount=1;
for n=1:1:length(broots)
  if broots(n)>0.1 & cutcount==1
    cutofft(1)=broots(n);
    cutcount=2;
  elseif broots(n)<0.1
  elseif abs(broots(n)-cutofft(cutcount-1))>tol & cutcount>1
    cutofft(cutcount)=broots(n);
    cutcount=cutcount+1;
  end
end

cutofft=real(cutofft);
cutofft=sort(cutofft);

%*****************************************************************
% Calculate the cutoff frequencies from the roots.
%*****************************************************************

for n=1:1:length(cutofft)
  freqstran(n)=cutofft(n)*ct/(a*2*pi);
end

%*****************************************************************
% Combine cutoff frequencies, sort, and display
%*****************************************************************

for n=1:1:length(freqsdil)-1
  freqstot(n)=freqsdil(n);
  freqstot(length(freqsdil)-1+n)=freqstran(n);
end

freqstot=sort(freqstot);

for n=1:1:num-1
  fprintf(1,’The cut off frequency for mode %1i is %9.2f %s\n’,n+1,freqstot(n),’Hz.’);
end

fprintf(1,’Press any key to continue. %s\n’,’ ’);
pause

%*****************************************************************
% end of script
%*****************************************************************
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3.4 Dispcurve.m

%*****************************************************************
% DISPCURV.M
%*****************************************************************
% This Matlab file computes the dispersion curves for the 
% requested number of modes (num).
%
% The curves are calculated from the frequency equation derived
% by Redwood(1960) pg. 137 eqns. 6.19.  
%
% Newton’s method is employed to iterate to the final solutions
% for each frequency of each curve.  
%
% Written by Anthony Puckett, March 2000, based on Matlab code 
% for a two layered cylinder written by Rich Laverty.
%
%*****************************************************************
%           Initialize Variables
%*****************************************************************

load properties
cl=cd;

%*****************************************************************
% Plotting Commands
%*****************************************************************

figure
xlabel(’ka /2\pi’)
ylabel(’c /cp’)
axis([0 2.0 0 2.0])
hold on

%*****************************************************************
% Main calculations
%*****************************************************************

for n=1:1:num

%*****************************************************************
% Determine start, step, and end frequency for each mode
% For higher modes the frequency is decreased until cp/co=2,
% that is the start frequency. 
%*****************************************************************

  if n==1
    k=0.01*2*pi/a;
    oldk=k;
    wstart=50000*(round(k*sqrt(E/rho)/50000));
    wend=50000*(round((1.5*2*pi/a)*ct/50000));
    wstep=(wend-wstart)/1000;
    pause
  else
    k=(n-1)*0.3*2*pi/a;
    oldk=k;
    wstart=50000*(round(k*1.2*sqrt(E/rho)/50000));
    if wstart<freqstot(n-1)*2*pi
      wstart=50000*(round((freqstot(n-1)*2*pi+50000)/50000));
    end
    w=wstart;
    while w<k*2.0*sqrt(E/rho)
      iter=0;
      goodcount=0;
      while goodcount<success & iter<1000
        p=sqrt((w^2/cl^2)-k^2);
        q=sqrt((w^2/ct^2)-k^2);
        dpdk=-k/sqrt((w^2/cl^2)-k^2);
        dqdk=-k/sqrt((w^2/ct^2)-k^2);
        dq2dk=-2*k;
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        freq1=k^2*q*besselj(0,q*a)/besselj(1,q*a);
        freq2=-0.5*((w/ct)^2)/a;
        freq3=(0.5*(w/ct)^2-k^2)^2*(besselj(0,p*a)/(p*besselj(1,p*a)));
        freq=freq1+freq2+freq3;

        d1freq1=k*2*q*besselj(0,q*a)/besselj(1,q*a);
        d2freq1=k^2*dqdk*besselj(0,q*a)/besselj(1,q*a);
        d3freq1=-k^2*dqdk*a*q;
        d4freq1=k^2*dqdk*a*q*(-besselj(0,q*a))*0.5*(besselj(0,q*a)-
besselj(2,q*a))/(besselj(1,q*a))^2;

        dfreq2=0;

        d1freq3=2*(0.5*(w/ct)^2-k^2)*(-2)*k*(besselj(0,p*a)/(p*besselj(1,p*a)));
        d2freq3=(0.5*(w/ct)^2-k^2)^2*(-dpdk/p^2)*besselj(0,p*a)/besselj(1,p*a);
        d3freq3=(0.5*(w/ct)^2-k^2)^2*(-dpdk*a*p);
        d4freq3=(0.5*(w/ct)^2-k^2)^2*dpdk*a*(-besselj(0,p*a))*0.5*(besselj(0,p*a)-
besselj(2,p*a))/(besselj(1,p*a))^2;

        dfreq1=d1freq1+d2freq1+d3freq1+d4freq1;
        dfreq3=d1freq3+d2freq3+d3freq3+d4freq3;
        dfreq=dfreq1+dfreq2+dfreq3;

        if iter>300
          newk=k-0.6*freq/dfreq;
        else
          newk=k-real(freq/dfreq);
        end

        if abs(newk-k)<0.0001 & abs(freq)<1.0
          goodcount=goodcount+1;
        else
          goodcount=0;
        end

        iter=iter+1;
        k=newk;
      end
      fprintf(1,’w=%8i  k=%6.4f  iter=%3i\n’,w,k,iter);
      iters(counter)=iter;
      counter=counter+1;
      kstep=k-oldk;
      if counter==2 & n~=1
        oldk=k;
        k=k*(w+50000)/w
        pause
      else
        oldk=k;
        k=k+kstep;
      end
      w=w-wstep;
    end
    wstart=w+wstep;
    wend=wstart+1000*wstep;
    k=k-kstep;
  end
  clear freqroots;
  clear wavenum;
  counter=1;

%*****************************************************************
% Calculate wave number for each frequency using Redwoods 
% frequency equation and Newton’s method.
%*****************************************************************

  for w=wstart:wstep:wend
    iter=0;
    goodcount=0;
    while goodcount<success & iter<1000
      p=sqrt((w^2/cl^2)-k^2);
      q=sqrt((w^2/ct^2)-k^2);
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      dpdk=-k/sqrt((w^2/cl^2)-k^2);
      dqdk=-k/sqrt((w^2/ct^2)-k^2);
      dq2dk=-2*k;

      freq1=k^2*q*besselj(0,q*a)/besselj(1,q*a);
      freq2=-0.5*((w/ct)^2)/a;
      freq3=(0.5*(w/ct)^2-k^2)^2*(besselj(0,p*a)/(p*besselj(1,p*a)));
      freq=freq1+freq2+freq3;

      d1freq1=k*2*q*besselj(0,q*a)/besselj(1,q*a);
      d2freq1=k^2*dqdk*besselj(0,q*a)/besselj(1,q*a);
      d3freq1=-k^2*dqdk*a*q;
      d4freq1=k^2*dqdk*a*(-besselj(0,q*a))*0.5*(besselj(0,q*a)-
besselj(2,q*a))/(besselj(1,q*a))^2;

      dfreq2=0;

      d1freq3=2*(0.5*(w/ct)^2-k^2)*(-2)*k*(besselj(0,p*a)/(p*besselj(1,p*a)));
      d2freq3=(0.5*(w/ct)^2-k^2)^2*(-dpdk/p^2)*besselj(0,p*a)/besselj(1,p*a);
      d3freq3=(0.5*(w/ct)^2-k^2)^2*(-dpdk*a*p);
      d4freq3=(0.5*(w/ct)^2-k^2)^2*dpdk*a*(-besselj(0,p*a))*0.5*(besselj(0,p*a)-
besselj(2,p*a))/(besselj(1,p*a))^2;

      dfreq1=d1freq1+d2freq1+d3freq1+d4freq1;
      dfreq3=d1freq3+d2freq3+d3freq3+d4freq3;
      dfreq=dfreq1+dfreq2+dfreq3;

%*****************************************************************
% If there are more than 300 iterations, the computer may be 
% iterating bewteen two numbers; this should fix the problem.
%*****************************************************************

      if iter>300
        newk=k-0.6*freq/dfreq;
      else
        newk=k-real(freq/dfreq);
      end

%*****************************************************************
% Determines when to start the next frequency
%*****************************************************************

      if abs(newk-k)<0.0001 & abs(freq)<1.0
        goodcount=goodcount+1;
      else
        goodcount=0;
      end

      iter=iter+1;
      k=newk;
    end
    fprintf(1,’w=%8i  k=%6.4f  iter=%3i  counter=%5i\n’,w,k,iter,counter);
    freqroots(counter)=real(w);
    wavenum(counter)=real(k);
    results(1,counter+(n-1)*1000)=wavenum(counter)*(a/(2*pi));
    results(2,counter+(n-1)*1000)=freqroots(counter)/wavenum(counter)/sqrt(E/rho);
    iters(counter)=iter;
    counter=counter+1;
    kstep=k-oldk;
    oldk=k;
    k=k+kstep;
  end

  fprintf(1,’Press any key to continue. %s\n’,’ ’);
  pause

  plot(wavenum.*(a/(2*pi)), (freqroots./(wavenum))/sqrt(E/rho))

end
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%*****************************************************************
% Write data to file.  cp/co and k*a/2*pi
%*****************************************************************

file = input(’What do you want to call this file?  Put single quotations around the
name.’);
fid=fopen(file,’w’);
fprintf(fid,’%8.4f  %8.4f\n’,results);
fclose(fid);

hold off

%*****************************************************************
% end of script
%*****************************************************************
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4. ABAQUS FILES

4.1 ABAQUS Finite Element Model Input Files

4.1.1 EXAMPLE OF INPUT FILE FOR SINGLE FREQUENCY MODEL

40x3200_hcont17e7.inp

*HEADING
AXIALLY APPLIED HAVERSINE PRESSURE LOAD ON AXISYMMETRIC CYLINDER
*NODE
1,0.,0.
41,.25,0.
131201,0.,20.
131241,.25,20.
*NGEN, NSET=END
1,41
*NGEN, NSET=MID
131201,131241
*NFILL, NSET=ALL
END,MID,3200,41
*NSET,NSET=CENTERL, GENERATE
1,131201,41
*NSET,NSET=DATA, GENERATE
30,131230,82
*NSET,NSET=ROW, GENERATE
30,131230,8200
*ELEMENT, TYPE=CAX4R, ELSET=SOLID
1,1,2,43,42
*ELGEN, ELSET=SOLID
1,40,1,1,3200,41,40
*SOLIDSECTION, ELSET=SOLID, MATERIAL=STEEL
*MATERIAL, NAME=STEEL
*ELASTIC
30.0E6, 0.3
*DENSITY
7.32E-4
*ELSET, ELSET=ROW, GENERATE
30,120030,8000
*ELSET,ELSET=DATA, GENERATE
30,127950,80
*ELSET, ELSET=FACE, GENERATE
1,20,1
*BOUNDARY
CENTERL,1
*STEP
TRAPZOIDAL PRESSURE STEP
*DYNAMIC, EXPLICIT, DIRECT USER CONTROL
5.0E-9,1E-4
*BULK VISCOSITY
0.0
*DLOAD
FACE,P1NU,1.0
*OUTPUT, FIELD, NUMBER INTERVAL=200
*ELEMENT OUTPUT, ELSET=DATA
S
*NODE OUTPUT, NSET=DATA
U
**OUTPUT, HISTORY,FREQUENCY=1
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**ENERGY OUTPUT
**ALLWK,ETOTAL,ALLIE,ALLKE
**NODE OUTPUT,NSET=ROW
**U2
**ELEMENT OUTPUT, ELSET=ROW
**S22
*END STEP

4.1.2 EXAMPLE OF INPUT FILE FOR BROADBAND FREQUENCY MODEL

60x9600_sum800_80.inp

*HEADING
HORIZONTAL BROADBAND PRESSURE LOAD ON AXISYMMETRIC CYLINDER
*NODE
1,0.,0.
61,.25,0.
585601,0.,40.
585661,.25,40.
*NGEN, NSET=END
1,61
*NGEN, NSET=MID
585601,585661
*NFILL, NSET=ALL
END,MID,9600,61
*NSET,NSET=CENTERL, GENERATE
1,585601,61
*NSET,NSET=DATA, GENERATE
61,585661,976
*NSET,NSET=COLUMN, GENERATE
61,585661,36600
*NSET,NSET=ROW, GENERATE
73201,73261,1
*NSET,NSET=TOTAL
DATA, ROW
*ELEMENT, TYPE=CAX4R, ELSET=SOLID
1,1,2,63,62
*ELGEN, ELSET=SOLID
1,60,1,1,9600,61,60
*SOLIDSECTION, ELSET=SOLID, MATERIAL=STEEL
*MATERIAL, NAME=STEEL
*ELASTIC
30.0E6, 0.3
*DENSITY
7.32E-4
*ELSET, ELSET=COLUMN, GENERATE
60,540060,36000
*ELSET,ELSET=DATA, GENERATE
60,575100,960
*ELSET, ELSET=FACE, GENERATE
1,20,1
*ELSET,ELSET=ROW, GENERATE
72001,72060,1
*ELSET,ELSET=TOTAL
DATA,ROW
*BOUNDARY
CENTERL,1
*STEP
GAUSSIAN PRESSURE PULSE
*DYNAMIC, EXPLICIT, DIRECT USER CONTROL
5.0E-9,2E-4
*RESTART,WRITE,NUM=20,OVERLAY
*BULK VISCOSITY
0.0
*DLOAD
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FACE,P1NU,1.0
**OUTPUT, FIELD, NUMBER INTERVAL=200
**ELEMENT OUTPUT, ELSET=TOTAL
**S
**NODE OUTPUT, NSET=TOTAL
**U
*OUTPUT, HISTORY,FREQUENCY=100
*ENERGY OUTPUT
ALLWK,ETOTAL,ALLIE,ALLKE
*NODE OUTPUT,NSET=COLUMN
U2
*ELEMENT OUTPUT, ELSET=COLUMN
S22
*FILE OUTPUT, NUMBER INTERVAL=400
*EL FILE, ELSET=DATA
S
*END STEP

4.2 ABAQUS User Files

4.2.1 EXAMPLE OF USER FILE FOR SINGLE FREQUENCY MODEL

havercont29e7.f

****5****10***15***20***25***30***35***40***45***50***55***60***65***70***75
*  FORTRAN SUBROUTINE FOR A HAVERSINE LOAD FUNCTION
****************************************************************************

subroutine vdload(nblock, ndim, stepTime, totalTime, amplitude,
     1  curCoords, velocity, dirCos, jltyp, value)

include ’vaba_param.inc’

dimension curCoords(nblock,ndim), velocity(nblock, ndim),
     1  dirCos(nblock,ndim,ndim), value(nblock)

        data pi /3.141592653589793/
data T /2.9E-6/

do 100 km = 1, nblock
   value(km)=10000.0*0.5*(1.0-cos(2.0*PI*stepTime/T))

100 continue

return
end

4.2.2 EXAMPLE OF USER FILE FOR BROADBAND FREQUENCY MODEL

gauss700pulse.f

****5****10***15***20***25***30***35***40***45***50***55***60***65***70***75
*  FORTRAN SUBROUTINE FOR A HAVERSINE LOAD FUNCTION    *
****************************************************************************

subroutine vdload(nblock, ndim, stepTime, totalTime, amplitude,
     1  curCoords, velocity, dirCos, jltyp, value)

include ’vaba_param.inc’

dimension curCoords(nblock,ndim), velocity(nblock, ndim),
     1  dirCos(nblock,ndim,ndim), value(nblock)
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integer n,km
real total,f(80)

        data pi /3.141592653589793/

do 150 km = 1, nblock
   total = 0
   do 100 n = 1, 80
      f(n) = 100*0.5*(1.0-cos(2.0*PI*stepTime*10000.0*n))
      total = total + f(n)

100    continue
   value(km)=total

150    continue

return
end
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5. GAUSSIAN MANIPULATION

This section describes the Gaussian broadband signal and how to choose the correct parameters to
produce a specific signal.  The advantage of the Gaussian broadband signal is the fact that any
range of frequencies can be produced from a single short signal.

The Gaussian broadband signal is made up of two parts.  First there is a Gauss distribution, which
is defined by
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The second part of the Gaussian broadband signal is a sine function. Thus, the Gaussian
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A Fourier transform of this signal produces another gauss distribution.  In other words the
frequency spectrum of the gaussian broadband has the shape of a gauss distribution.

There are four variables that can change the signal shape and the frequency spectrum of a
Gaussian broadband signal. (These descriptions assume the independent variable is time.)

 – standard deviation.  The length of the gaussian distribution will be just over 6 sigmas.
The frequency range around the mean frequency is equal to 1/ .

freq – mean frequency in Hz, center frequency on the frequency spectrum.

 – mean, point in time where Gauss distribution is a maximum.

 A – a constant to adjust the amplitude of the signal.

The next section shows an example and illustrates how the Gaussian broadband signal and the
frequency spectrum are affected by changing each variable.

Example:  Create a signal with a frequency range of 0 – 800 kHz.

Solution:  The frequency range is 800,000 Hz, so 625.1000,8001 −== Eσ  sec.  The mean

frequency needs to be 400 kHz, so 000,400=freq Hz.  The vast majority of the signal should

appear at 0>time , so σµ ⋅≥ 3 .  The mean in this case was chosen to correspond with a trough

in the sine wave, 54375.1000,400175.5 −=⋅= Eµ sec.  Finally, A was chosen to be 0.04 so
the peak amplitude was 6000.  Figure 1 is a plot of the Gaussian broadband signal and the
frequency spectrum.
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Figure 1: Initial variables

��� ��
������������ 50.2 −= Eµ sec. the signal moves in time and the shape is different.
The frequency spectrum has the same range but a smaller amplitude, Figure 2.

��������	�
�����
�� ����������
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Next, the mean frequency is increased, so 000,600=freq Hz.  The frequency spectrum shifts to
the right, and the increase in peaks in the signal also illustrate the higher frequency, Figure 3.

Figure 3: Mean Frequency Increased.

Finally, the frequency range is reduced to 200 kHz by making 60.5 −= Eσ 
�����������
increased by four so has the length of the signal. The amplitude of the signal is also smaller.

��������	�
�����
�� ����������
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6. STEPS FOR EXTRACTION OF DATA FROM ABAQUS RESULTS

6.1 Single Frequency Dispersion Curves

1. Specified column of nodes and elements along axis of bar, usually at ¾ the radius, in
ABAQUS input file.  Specified type of stress and displacement data for specified
nodes, see example code.

*NSET,NSET=DATA, GENERATE
30,131230,82
*ELSET,ELSET=DATA, GENERATE
30,127950,80
.
.
*OUTPUT, FIELD, NUMBER INTERVAL=200
*ELEMENT OUTPUT, ELSET=DATA
S
*NODE OUTPUT, NSET=DATA
U

2. Ran ABAQUS model.
3. Opened *.odb file in ABAQUS Viewer
4. Selected contour plot of S22 stresses (axial)
5. Under Tools:Path:Create created path from previously specified nodes.
6. Under Tools:XYData:Create created XY plot of data along path.
7. Plotted stresses at largest time, typically.
8. Under Report:XY created XY data file from plot in current view port.
9. Removed titles from data file, so only data was present
10. Ran Matlab file to manipulate data and plot wave numbers.

%*****************************************************************
% M40X3200_HCONT17E7RIGHT.M
%*****************************************************************
% This program reads a text file of element and stress data. 
% An FFT is performed on the data in the space domain.  
% Wavenumbers for each mode are determined.  
%*****************************************************************
% Read data from file
%*****************************************************************

[time, x] = textread(’40x3200_hcont17e7right.rpt’,’%f %f’);

%*****************************************************************
% Sample Rate, # of samples divided by the length of the bar.
%*****************************************************************

Fs=80;

%*****************************************************************
% Extensive zero-padding, number of samples a power of 2
%*****************************************************************

tnpts=2.^(ceil(log(length(x))/log(2)))*128;
FFT=fft(x,tnpts);

%*****************************************************************
% Manipulate results of FFT
%*****************************************************************
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NumUniquePts = ceil((tnpts+1)/2);
FFTX=FFT(1:NumUniquePts);
FFTX=abs(FFTX);
FFTX=FFTX*2;
FFTX(1)=FFTX(1)/2;
FFTX(length(FFTX))=FFTX(length(FFTX))/2;
FFTX=FFTX/length(x);
f=(0:NumUniquePts-1)*Fs/tnpts;

%*****************************************************************
% Plotting commands
%*****************************************************************

plot(f,FFTX);
l=axis;
axis([0 8 0 l(4)]);
xlabel(’Wave Number (in)’);
ylabel(’Magnitude’);

11. Picked points from graph for each mode.  Example:

12. Calculated points on dispersion curve from frequency and wave numbers.
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6.2 Broadband Dispersion Curves

1. Specified column of nodes and elements along axis of bar at the radius, in ABAQUS
input file.  Specified the stress data for specified nodes be written to output file, see
example code.

*NSET,NSET=DATA, GENERATE
30,131230,82
*ELSET,ELSET=DATA, GENERATE
30,127950,80
.
.
*FILE OUTPUT, NUMBER INTERVAL=400
*EL FILE, ELSET=DATA
S

2. Converted output file for user post processing (at UNIX command prompt).

abaq5814 job=60x4800_sum800_40_45 convert=select

3. Coded Fortran file for data extraction.

****5****10***15***20***25***30***35***40***45***50***55***60***65***70***75
*  FORTRAN PROGRAM FOR COVERTING RESULTS FOR USE BY MATLAB
****************************************************************************

PROGRAM RESULTS

INCLUDE ’aba_param.inc’
CHARACTER*80 FNAME
REAL EL,STRESS
DIMENSION ARRAY(513), JRRAY(NPRECD,513), LRUNIT(2,1)
EQUIVALENCE (ARRAY(1),JRRAY(1,1))

FNAME=’60x4800_sum800_40_45’
NRU=1
LRUNIT(1,1)=8
LRUNIT(2,1)=2
LOUTF=0
CALL INITPF(FNAME,NRU,LRUNIT,LOUTF)
JUNIT=8
CALL DBRNU(JUNIT)

OPEN (UNIT=55, FILE="60x4800_sum800_40_45.txt", STATUS="UNKNOWN")

DO 100 K1=1,100000000
  CALL DBFILE(0,ARRAY,JRCD)
  IF (JRCD.NE.0) GOTO 110
  KEY=JRRAY(1,2)
  IF (KEY.EQ.1) THEN
    EL=JRRAY(1,3)
  ELSEIF (KEY.EQ.11) THEN
    STRESS=ARRAY(4)
    WRITE (55,*) EL,STRESS
  END IF

 100 CONTINUE
 110 CONTINUE

ENDFILE 55

STOP
END
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4. Compiled Fortran file (at UNIX command prompt).

abaq5814 make job=60x4800_sum800_40_45

5. Executed Fortran file (at UNIX command prompt).

60x4800_sum800_40_45.x

6. Ran Matlab file to manipulate data and plot wave number spectrums.
%*****************************************************************
% FFT60x4800_SUM800_40_45.M
%*****************************************************************
% This program reads a text file of element and stress data. 
% A Fourier Transform is performed on the data in the time domain
% and then in the space domain.  Dispersion curves are created.
%*****************************************************************
% Read data from file
%*****************************************************************

[element, s22]=textread(’60x4800_sum800_40_45.txt’,’%f %f’);

%*****************************************************************
% Put data into a matrix with stress for a given element in a
% given column with each row being a different time
%*****************************************************************

r=0;
for n=1:1:length(element)
  if round(element(n))==45
    r=r+1;
    results(r,round((element(n)-45)/480+1))=s22(n);
  else
    results(r,round((element(n)-45)/480+1))=s22(n);
  end
end

%*****************************************************************
% Perform DFT in time domain.
%*****************************************************************

[M,N]=size(results)

%NFFT=2.^(ceil((log(M))/log(2)))*8;
timefft=fft(results);
timeuniquepts=ceil((M+1)/2);

timefft=timefft(1:timeuniquepts,1:N);

mtimefft=abs(timefft);
mtimefft=mtimefft*2;

mtimefft(1,1:N)=mtimefft(1,1:N)/2;
mtimefft(timeuniquepts,1:N)=mtimefft(timeuniquepts,1:N)/2;
mtimefft=mtimefft/M;

freq=(0:timeuniquepts-1)*(401/1.0e-4)/(M);

%*****************************************************************
% Perform FFT in space domain with significant zero padding.
%*****************************************************************

NFFT=2.^(ceil(log(length(mtimefft(1,1:N)))/log(2)))*8;
spacefft=fft(mtimefft.’,NFFT);

spaceuniquepts = ceil((NFFT+1)/2);
spacefft=spacefft(1:spaceuniquepts,1:timeuniquepts);

mspacefft=abs(spacefft);
mspacefft=mspacefft*2;



A23

mspacefft(1,1:timeuniquepts)=spacefft(1,1:timeuniquepts)/2;
mspacefft(spaceuniquepts,1:timeuniquepts)=spacefft(spaceuniquepts,1:timeuniquepts)/2;
mspacefft=mspacefft/N;

lengthofbar=5;
numofsamples=300;
lengthofrun=2.25e-5;
numoftsamples=201;

k=(0:spaceuniquepts-1)*30/NFFT;

%*****************************************************************
% Plot wave numbers for each frequency.
%*****************************************************************

for j=1:2:81
    plot(k,mspacefft(1:spaceuniquepts,j));
    l=axis;
    axis([0 10 0 l(4)]);
    freqlabel = sprintf(’frequency = %9.2f’, freq(j));
    text(.5*10,.75*6,freqlabel);
    pause
end

7. Picked wave numbers from peaks for each frequency.
8. Calculated points on dispersion curves from frequency and wave number.
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7. EXCEL FILES OF DATA POINTS FOR DISPERSION CURVES

If frequencies are omitted for a mode, then either the mode is not excited at that fre-
quency or the wave number could not be determined.

7.1 Data for 20x6400 Dispersion Curves

Frequency (Hz) k1 (1/in.) k1*a/2*pi c1/c0 k2 (1/in.) K2*a/2*pi c2/c0 k3 (1/in.) K3*a/2*pi c3/c0

303030.30 2.3047 0.5762 0.6438

312500.00 2.4121 0.6030 0.6344 1.1914 0.2979 1.2844

322580.65 2.5293 0.6323 0.6245 1.2793 0.3198 1.2347

333333.33 2.6465 0.6616 0.6167 1.3574 0.3394 1.2025 0.2442 0.0611 6.6839

344827.59 2.7660 0.6915 0.6104 1.4352 0.3588 1.1765 0.3714 0.0929 4.5463

357142.86 2.8955 0.7239 0.6040 1.5149 0.3787 1.1544 0.4948 0.1237 3.5344

370370.37 3.0299 0.7575 0.5986 1.5968 0.3992 1.1358 0.6209 0.1552 2.9209

384615.38 3.1738 0.7935 0.5934 1.6797 0.4199 1.1212 0.7502 0.1876 2.5104

400000.00 3.3250 0.8313 0.5891 1.7773 0.4443 1.1020 0.8789 0.2197 2.2285

416666.67 3.4863 0.8716 0.5852 1.8750 0.4688 1.0881 1.0254 0.2564 1.9897

434782.61 3.6621 0.9155 0.5814 1.9922 0.4981 1.0687 1.1719 0.2930 1.8167

454545.45 3.8476 0.9619 0.5785 2.1150 0.5288 1.0524 1.3281 0.3320 1.6759

476190.48 4.0527 1.0132 0.5754 2.2656 0.5664 1.0292 1.5039 0.3760 1.5505

500000.00 4.2273 1.0568 0.5792 2.4414 0.6104 1.0028 1.6895 0.4224 1.4491

526315.79 4.5215 1.1304 0.5700 2.6660 0.6665 0.9667 1.9043 0.4761 1.3533

555555.56 4.7852 1.1963 0.5685 2.9492 0.7373 0.9224 2.1289 0.5322 1.2778

563380.28 4.8633 1.2158 0.5672 3.0330 0.7583 0.9096 2.1875 0.5469 1.2611

571428.57 4.9316 1.2329 0.5674 3.1162 0.7791 0.8979 2.2461 0.5615 1.2457

579710.14 5.0098 1.2525 0.5666 3.2129 0.8032 0.8835 2.3047 0.5762 1.2317

588235.29 5.0879 1.2720 0.5661 3.3050 0.8263 0.8715 2.3633 0.5908 1.2188

625000.00 5.4250 1.3563 0.5641 3.7210 0.9303 0.8225 2.6074 0.6519 1.1737

666666.67 5.8010 1.4503 0.5627 4.1990 1.0498 0.7774 2.8711 0.7178 1.1370

714285.71 6.2402 1.5601 0.5605 4.7168 1.1792 0.7415 3.1836 0.7959 1.0986

769230.77 6.7480 1.6870 0.5582 5.2930 1.3233 0.7116 3.5938 0.8985 1.0481

833333.33 7.3340 1.8335 0.5564 5.9430 1.4858 0.6866 4.1992 1.0498 0.9717

909090.91 8.0370 2.0093 0.5539 6.6840 1.6710 0.6660 5.0880 1.2720 0.8749

Frequency (Hz) k4 (1/in.) K4*a/2*pi c4/c0

571428.57 0.9500 0.2375 2.9453

579710.14 1.1621 0.2905 2.4427

588235.29 1.3281 0.3320 2.1688

625000.00 1.8350 0.4588 1.6678

666666.67 2.2168 0.5542 1.4726

714285.71 2.5781 0.6445 1.3567

769230.77 2.9590 0.7398 1.2729

833333.33 3.3691 0.8423 1.2112

909090.91 3.8379 0.9595 1.1599
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7.2 Data for Over 30 Elements per Wavelength Dispersion Curves

Freq. (Hz) Element Config. k1 (1/in.) k1*a/2*pi c1/c0 k2 (1/in.) K2*a/2*pi c2/c0

20000 4x5120 0.0977 0.0244 1.0024

22222 5x3200 0.1075 0.0269 1.0122

25000 5x3200 0.1221 0.0305 1.0026

28571 5x3200 0.1416 0.0354 0.9880

33333 5x3200 0.1660 0.0415 0.9833

40000 5x3200 0.2002 0.0501 0.9783

50000 5x3200 0.2490 0.0623 0.9833

55556 8x2560 0.2734 0.0684 0.9950

62500 8x2560 0.3125 0.0781 0.9793

71429 8x2560 0.3515 0.0879 0.9950

83333 8x2560 0.4141 0.1035 0.9854

100000 12x3840 0.5039 0.1260 0.9717

105263 12x3840 0.5273 0.1318 0.9775

111111 12x3840 0.5625 0.1406 0.9672

117647 12x3840 0.5977 0.1494 0.9638

125000 12x3840 0.6328 0.1582 0.9673

133333 12x3840 0.6797 0.1699 0.9605

142857 12x3840 0.7383 0.1846 0.9475

153846 12x3840 0.7969 0.1992 0.9453

166667 12x3840 0.8789 0.2197 0.9286

181818 12x3840 0.9727 0.2432 0.9153

200000 12x3840 1.1130 0.2783 0.8799

208333 12x3840 1.1836 0.2959 0.8619

217391 12x3840 1.2656 0.3164 0.8411

227273 12x3840 1.3711 0.3428 0.8117

238095 12x3840 1.5000 0.3750 0.7772

250000 16x5120 1.6484 0.4121 0.7426

263158 16x5120 1.8203 0.4551 0.7079

277778 16x5120 2.0078 0.5020 0.6774

294118 16x5120 2.2030 0.5508 0.6537

303030 20x6400 2.3047 0.5762 0.6438

312500 20x6400 2.4121 0.6030 0.6344 1.1914 0.2979 1.2844

322581 20x6400 2.5293 0.6323 0.6245 1.2793 0.3198 1.2347

333333 20x6400 2.6465 0.6616 0.6167 1.3574 0.3394 1.2025

344828 24x1920 2.7618 0.6905 0.6114

357143 24x1920 1.5109 0.3777 1.1575

370370 24x1920 3.0110 0.7528 0.6023 1.5974 0.3994 1.1353

384615 24x1920 3.1567 0.7892 0.5966 1.6776 0.4194 1.1226

400000 28x2240 3.3131 0.8283 0.5912 1.7752 0.4438 1.1033

416667 28x2240 3.4726 0.8682 0.5875 1.8718 0.4680 1.0900

434783 28x2240 3.6457 0.9114 0.5840 1.9859 0.4965 1.0720

454545 32x2560 3.8256 0.9564 0.5818 2.1066 0.5267 1.0566

476190 32x2560 2.2503 0.5626 1.0362

500000 32x2560 4.2602 1.0651 0.5747 2.4221 0.6055 1.0108

526316 36x2880 4.4939 1.1235 0.5735 2.6415 0.6604 0.9756

555556 36x2880 4.7458 1.1865 0.5732 2.9120 0.7280 0.9342

588235 40x3200 5.0444 1.2611 0.5710 3.2518 0.8130 0.8858
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Freq. (Hz) Element Config. k1 (1/in.) k1*a/2*pi c1/c0 k2 (1/in.) K2*a/2*pi c2/c0

625000 45x3600 5.3677 1.3419 0.5702 3.6531 0.9133 0.8378

666667 45x3600 5.7347 1.4337 0.5692 4.1126 1.0282 0.7938

714286 50x4000 6.1535 1.5384 0.5684 4.6153 1.1538 0.7578

769231 60x4800 6.6355 1.6589 0.5676 5.1707 1.2927 0.7285

Freq. (Hz) Element Config. k3 (1/in.) K3*a/2*pi c3/c0 k4 (1/in.) K4*a/2*pi c4/c0

400000 28x2240 0.8784 0.2196 2.2298

416667 28x2240 1.0267 0.2567 1.9872

434783 28x2240 1.1700 0.2925 1.8196

454545 32x2560 1.3226 0.3307 1.6829

476190 32x2560 1.4958 0.3740 1.5589

500000 32x2560 1.6853 0.4213 1.4527

526316 36x2880 1.8902 0.4726 1.3634

555556 36x2880 2.1165 0.5291 1.2853

588235 40x3200 2.3471 0.5868 1.2272

625000 45x3600 2.5873 0.6468 1.1829 1.8062 0.4516 1.6944

666667 45x3600 2.8499 0.7125 1.1455 2.1930 0.5483 1.4886

714286 50x4000 3.1498 0.7875 1.1104

769231 60x4800 3.5229 0.8807 1.0692 2.9160 0.7290 1.2917

7.3 Data for Broadband Dispersion Curves

Frequency (Hz) k1 (1/in.) k1*a/2*pi c1/c0 k2 (1/in.) K2*a/2*pi c2/c0 k3 (1/in.) K3*a/2*pi c3/c0

40000 0.1868 0.0467 1.0577

60000 0.2893 0.0723 1.0245

80000 0.3918 0.0980 1.0086

100000 0.4944 0.1236 0.9991

120000 0.5969 0.1492 0.9931

140000 0.7068 0.1767 0.9784

160000 0.8240 0.2060 0.9591

180000 0.9448 0.2362 0.9411

200000 1.0877 0.2719 0.9083

220000 1.2598 0.3150 0.8626

240000 1.4760 0.3690 0.8032

260000 1.7432 0.4358 0.7367

280000 1.9958 0.4990 0.6930

300000 2.2450 0.5613 0.6601

320000 2.4210 0.6053 0.6529 1.1940 0.2985 1.3239

340000 2.6880 0.6720 0.6248 1.3770 0.3443 1.2197

360000 2.8895 0.7224 0.6154 1.5125 0.3781 1.1757 0.4835 0.1209 3.6779

380000 3.0945 0.7736 0.6066 1.6405 0.4101 1.1442 0.6920 0.1730 2.7125

400000 3.2850 0.8213 0.6015 1.7575 0.4394 1.1242 0.8770 0.2193 2.2530

420000 3.4860 0.8715 0.5951 1.8787 0.4697 1.1043 1.0255 0.2564 2.0231

440000 3.6841 0.9210 0.5899 2.0020 0.5005 1.0856 1.1830 0.2958 1.8372
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Frequency (Hz) k1 (1/in.) k1*a/2*pi c1/c0 k2 (1/in.) K2*a/2*pi c2/c0 k3 (1/in.) K3*a/2*pi c3/c0

460000 3.8820 0.9705 0.5853 2.1277 0.5319 1.0679 1.3404 0.3351 1.6952

480000 4.0485* 1.0121 0.5857 2.2560 0.5640 1.0510 1.5050 0.3763 1.5754

500000 4.2350* 1.0588 0.5832 2.3950 0.5988 1.0312 1.6480 0.4120 1.4987

520000 4.3980 1.0995 0.5840 2.5525 0.6381 1.0063 1.8130 0.4533 1.4168

540000 4.5980* 1.1495 0.5801 2.7360 0.6840 0.9749 1.9740 0.4935 1.3513

560000 4.7560 1.1890 0.5816 2.9298 0.7325 0.9442 2.1314 0.5329 1.2978

580000 4.9560* 1.2390 0.5781 3.1494 0.7874 0.9097 2.2778 0.5695 1.2578

600000 5.1350* 1.2838 0.5772 3.3582 0.8396 0.8825 2.4150 0.6038 1.2272

620000 5.3150* 1.3288 0.5762 3.5780 0.8945 0.8559 2.5450 0.6363 1.2034

640000 5.4860* 1.3715 0.5763 3.7975 0.9494 0.8325 2.6770 0.6693 1.1809

660000 5.6650* 1.4163 0.5755 4.0190 1.0048 0.8112 2.7940 0.6985 1.1668

680000 5.8450* 1.4613 0.5747 4.2225 1.0556 0.7955 2.9225 0.7306 1.1493

700000 6.0260* 1.5065 0.5738 4.4385 1.1096 0.7790 3.0580 0.7645 1.1307

720000 6.1950* 1.5488 0.5741 4.6360 1.1590 0.7672 3.1824 0.7956 1.1176

740000 6.3830 1.5958 0.5727 4.8600 1.2150 0.7521 3.3215 0.8304 1.1005

760000 6.5480 1.6370 0.5733 5.0755 1.2689 0.7397 3.4610 0.8653 1.0847

780000 6.7420 1.6855 0.5715 5.2808 1.3202 0.7296 3.6150 0.9038 1.0658

800000 5.4750 1.3688 0.7218 3.7760 0.9440 1.0465

Frequency (Hz) k4 (1/in.) K4*a/2*pi c4/c0

580000 1.2820** 0.3205 2.2348

600000 1.4840** 0.3710 1.9971

620000 1.7250** 0.4313 1.7754

640000 1.9461** 0.4865 1.6245

660000 2.1130** 0.5283 1.5429

680000 2.2780† 0.5695 1.4745

700000 2.4320† 0.6080 1.4218

720000 2.5850† 0.6463 1.3758

740000 2.7210† 0.6803 1.3434

760000 2.8530† 0.7133 1.3158

780000 2.9810† 0.7453 1.2925

800000 3.1128† 0.7782 1.2695

The majority of the wavenumbers were
determined from a set of data points lo-
cated at 0.75 the radius.  The marked
wavenumbers (see below) indicate the
data was taken from a different location
on the radius.

*  radius⋅25.0
**  radius⋅5.0
† radius⋅0.1  (surface)
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